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PREFACE 

This handbook, Mathematical Appendix and Glossary, is the last in a 
series of five on reliability. The series is directed largely toward the working 
engineers who have the responsibility for creating and producing equipment 
and systems which can be relied upon by the users in the field. 

The five handbooks are: 

1. Design for Reliability, AMCP 706-196 

2. Reliability Prediction, AMCP 706-197 

3. Reliability Measurement, AMCP 706-198 

4. Contracting for Reliability, AMCP 706-199 

5. Mathematical Appendix and Glossary, AMCP 706-200. 

This handbook is directed toward reliability engineers and managers who 
need to be familiar with or need to have access to statistical .tables, curves, 
and techniques, or to special terms used in the reliability discipline. 
References are given to the literature for further information. 

Much of the handbook content was obtained from many individuals, 
reports, journals, books, and other literature. It is impractical here to 
acknowledge the assistance of everyone who made a contribution. 

v The original volume was prepared by Tracor Jitco, Inc. The revision was 
prepared by Dr. Ralph A. Evans of Evans Associates, Durham, N.C., for the 
Engineering Handbook Office of the Research Triangle Institute, prime 
contractor to the US Army Materiel Command. Technical guidance and 
coordination on the original draft were provided by a committee under the 
direction of Mr. O. P. Bruno, Army Materiel System Analysis Agency, US 
Army Materiel Command. 

The Engineering Design Handbooks fall into two basic categories, those 
approved for release and sale, and those classified for security reasons. The 
US Army Materiel Command policy is to release these Engineering Design 
Handbooks in accordance with current DOD Directive 7230.7, dated 18 
September 1973. All unclassified Handbooks can be obtained from the 
National Technical Information Service (NTIS). Procedures for acquiring 
these Handbooks follow: 

XI 
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a. All Department of Army activities having need for the Handbooks 
must submit their request on an official requisition form (DA Form 17, 
dated Jan 70) directly to: 

Commander 
Letterkenny Army Depot 
ATTN:  AMXLE-ATD 
Chambersburg, PA 17201 

(Requests for classified documents must be submitted, with appropriate 
"Need to Know" justification, to Letterkeny Army Depot.) DA activities 
will not requisition Handbooks for further free distribution. 

b. All other requestors, DOD, Navy, Air Force, Marine Corps, nonmilitary 
Government agencies, contractors, private industry, individuals, universities, 
and others must purchase these Handbooks from: 

National Technical Information Service 
Department of Commerce 
Springfield, VA 22151 

Classified documents may be released on a "Need to Know" basis verified by 
an official Department of Army representative and processed from Defense 
Documentation Center (DDC), ATTN: DDC-TSR, Cameron Station, 
Alexandria, VA 22314. 

Comments and suggestions on this Handbook are welcome and should be 
addressed to: 

Commander 
US Army Materiel Development and Readiness Command 
Alexandria, VA 22333 

(DA Forms 2028, Recommended Changes to Publications, which are 
available through normal publications supply channels, may be used for 
comments/suggestions.) 

Xll 
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CHAPTER 1 

GLOSSARY 

LIST OF SYMBOLS 

AOQ = average outgoing quality                       N 

AOQL = average outgoing quality limit             OC 

AQL = acceptable quality level                         PW 

ASN = average sample number                         Pmf 

ATE = automatic test equipment                     QC 

Cdf = cumulative distribution factor              QPL 

E\x\ = expected value of x                               ^ 

FMECA = failure mode, effects, and criti-           rms 

g(t) 

G(t) 

LTPD 

mse 

MTBF 

MTF 

MTFF 

MTTR 

MTX 

cality analysis 

state   of system under usual 
conditions 

state of system under unusual 
conditions 

RQL 

Sf 

population size 

operating characteristic 

probability   density   function 

probability mass function 

quality control 

qualified products list 

reliability 

square    root    of    arithmetic 
mean of the squares 

rejectable quality level 

survivor function 

denotes   statistical   definition 

lot tolerance percent defective t = time 

mean square error 
T = time interval 

mean time-between-failures 
X = value of random variable X 

mean time-to-failure 
X = population mean 

mean time-to-first-failure 
X = name of random variable 

a =  producers risk 
mean time-to-repair 

ß =  consumers risk 
arithmetic or .s-expected value 
for xxxxtime e =  1/X 
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T{t) 

= failure rate 

= mean value 

= standard deviation 

= function of time 

Some words (phrases) have more than one 
definition. No relative importance is implied 
by the order in which they appear. When 
there is more than one definition of a word 
(phrase), they are numbered with an initial 
superscript. 

A definition indicated by a * has more 
complete explanations of the term and fewer 
ambiguities than other definitions. The 
definitions in this Glossary try to impart 
knowledge. The accompanying notes help to 
provide understanding. Knowledge without 
understanding can be costly. Do not apply 
any of these concepts blindly. 

See Refs. 1 -3 for the definitions of many 
concepts not listed here. 

When the precise statistical definition of a 
word is intended, the word has "s-" as a 
prefix; e.g., i-normal, s-independence, s-reli- 
ability. 

accelerated life test. A life test under test 
conditions that are more severe than usual 
operating conditions. It is helpful, but not 
necessary, that a relationship between test 
severity and the probability distribution of 
life be ascertainable. 

Note 1. The phrase "more severe" is 
actually defined by the fact that the Cdf of 
life is everywhere greater than the Cdf of 
life under usual conditions. 

Note   2. Where   there  is more  than  one 
failure mode, the concept of acceleration is 

not simple. Conceivably, a set of test 
conditions which accelerates some failure 
modes could be more benign for other 
failure modes. 

Note 3. Accelerated life tests can be 
qualitatively useful in finding potential 
failure modes even when they are not 
quantitatively useful. 

See also: acceleration, true 

acceleration factor. Notation: 
T(0 = the   time   transformation   from 

more-severe   test   conditions   to 
the usual test conditions. 

The acceleration factor is r(t)/t. 
The    differential    acceleration    factor   is 
dT(t)/dt. 

Note 1. acceleration factor is defined only 
for true acceleration. If the acceleration is 
not true, the concept is meaningless (see: 
2acceleration, true (Note 3). 

Note 2. It helps, but is not necessary, if 
the acceleration factor is independent of 
time. In practical situations, it usually is 
assumed to be independent of time. A good 
reason for so doing is that there is rarely 
enough statistical evidence to dispute this 
simple, convenient hypothesis. 

See also: acceleration, true. 

'acceleration, true. Acceleration is true if 
and only if the system, under the 
more-severe test conditions, passes rea- 
sonably through equivalent states and in 
the same order it did at usual conditions. 
(Adapted from Ref. 4.) 

Note 1. Acceleration need not be true to 
be useful. 

Note 2. The word "reasonably" is used 
because the needs and desires of the people 
involved change from time to time. Things 
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need only be close enough for the purposes 
at hand. 

Note 3. "System state" describes only 
those characteristics of the system which 
are important for the purposes at hand 
(just as is true in thermodynamics). 

Note 4. Two states of a system are 
"equivalent" if and only if one can be 
reversibly transformed into the other by 
changing the test conditions. 

Note 5. Mathematical definition. 
g(t) = state    of   system   under   usual 

conditions. 
G(t)= equivalent state of system under 

more-severe test conditions. It is 
not the state at the more-severe 
test conditions, but is the state 
after    being    reversibly    trans- 
formed to the usual conditions. 

T(0 = a function of time. 
There is true acceleration if and only if: 
(a) G(t)= g(T[t)) 
(b) r(t)    is    strictly    monotonically    in- 

'   creasing 
(c) G(0) = g(0) 
(d) T(0) = 0 (this is a logical consequence 

of (a) and (c)). 

The acceleration factor is defined as r(f)/r. 
Incremental acceleration factor is defined 
as dr(t)/dt. 

2 acceleration, true. Acceleration is true if and 
only if the probability distribution of life 
for each important failure mode, under the 
more-severe test conditions, can be changed 
(by a time transformation) to the probabil- 
ity distribution of life for that failure 
mode, under the usual test conditions, and: 

(a) The time transformation is the same 
for each such failure mode. 
(b) The time transformation is strictly 
monotonically increasing. 

Note 1. Acceleration need not be true to 
be useful. 

Note 2. Let the time transformation be 
T(0, then acceleration factors are defined 
as in1 acceleration, true (Note 5). 

Note 3. True acceleration could be defined 
singly for each important failure mode. 

See also: acceleration factor. 

accept/reject test. A test, the result of which 
will be the action to accept or to reject 
something, e.g., an hypothesis or a batch of 
incoming material. 

The test will have a set of constants which 
are selected before the test, and it will have 
an operating characteristic. For example, a 
common fixed-sample-size attribute test 
has the constants: sample-size and accep- 
tance-number; a set of procedures to select 
a random-sample, to test every item for 
good/bad (and evaluation criteria therefor), 
and to stop the test where all items are 
tested; and an operating characteristic that 
shows the probability of acceptance (or 
rejection) as a function of the true 
fraction-bad of the population from which 
the sample was a random one. 

Note 1. The data also can be used for 
estimating parameters of the probability 
distribution of the population. For many 
kinds of tests, this may be intractable 
because the test procedures were chosen to 
minimize resources consumed in the test 
rather than to make parameter estimation 
easy. 

Note 2. The accept/reject criterion must 
have only 1-dimension. That is, even if 
several characteristics are measured (for 
example, major and minor defects) the 
numbers so obtained must be combined in 
some way to get a single number that is 
then compared against the accept/reject 
criterion. The accept/reject criterion can be 
complicated, e.g., accept if the average 
sample length is between 4.0 and 5.0 in., 
reject otherwise. 

1-3 
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Note 3. This kind of test is used largely for 
theoretical hypothesis testing and for 
quality-control acceptance-sampling. 

See also: operating characteristic, random 
sample. 

*1 acceptable quality level (AQL). A point on 
the quality coordinate of the operating 
characteristic of an attribute acceptance- 
sampling plan which is in the region of 
good quality and reasonably low rejection 
probability. 

Note 1. The rejection probability at the 
AQL is often called the producer risk a. 

Note 2. The conventional definitions (see: 
defs. 2 and 3) tend to endow this point 
with very special properties which it does 
not really have. Conventionally this point 
(AQL, a) is one of two that define the 
acceptance sampling plan and its operating 
characteristic. But any 2 points on that 
operating characteristic will generate exact- 
ly the same acceptance sampling plan. That 
is why this modified, more usable defini- 
tion is given. 

Note 3. An example of an AQL is 1.5% 
defective at a rejection probability (pro- 
ducer risk) of 10%. 

Note 4. The term itself can be very 
misleading, especially to non-specialists in 
Quality Control. Its use ought to be 
avoided in material written for such people. 

characteristic or group of characteristics, he 
indicates to the supplier that his (the 
consumer's) acceptance sampling plan will 
accept the great majority of the lots that 
the supplier submits, provided that the 
process average level of percent defective in 
these lots is no greater than the designated 
value of AQL. Thus the AQL is a 
designated value of percent defective (or of 
defects per hundred units) that the 
consumer indicates will be accepted a great 
majority of the time by the acceptance 
sampling procedure to be used. The AQL 
alone does not describe the protection to 
the consumer for individual lots but more 
directly relates to what might be expected 
from a series of lots, provided that the 
steps called for in the reference AQL 
system of procedures are taken. It is 
necessary to refer to the OC curve of the 
sampling plan that the consumer will use, 
or to the AOQL of the plan, to determine 
what protection the consumer will have. 
(Ref. 3) 

3 acceptable quality level (AQL). The maxi- 
mum percent defective (or the maximum 
number of defects per hundred units) that, 
for the purposes of sampling inspection, 
can be considered satisfactory as a process 
average. (Refs. 1 and 7) 

*' acceptance number. The largest number of 
defects that can occur in an acceptance 
sampling plan and still have the lot 
accepted. 

See also: operating characteristic. 

2acceptable quality level (AQL). The maxi- 
mum percent defective (or the maximum 
number of defects per hundred units) that, 
for purposes of acceptance sampling, can 
be considered satisfactory as a process 
average. 

Note. When  a consumer designates some 
specific    value   of   AQL   for   a   certain 

Note .1. In a 1-sample plan, this is a 
straightforward concept. In an m-sample 
plan (m > 1) the concept usually is applied 
to each of the samples; so there are m 
acceptance numbers. In a sequential test, 
the acceptance number is the boundary of 
the plan which separates "continue testing" 
from "accept"; it is a function of the 
number tested, total test time, or whatever 
variable represents the amount of testing 
done so far. 

1-4 
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Note 2. The concept is limited to those 
plans which have a discrete dependent 
variable that can be interpreted as defects. 

See also:  defect. 

2 acceptance number. The largest number of 
defectives (or defects) in the sample or 
samples under consideration that will 
permit the acceptance of the inspection lot. 
(Ref. 3.) 

'acceptance number. The maximum number 
of defects or defective units in the sample 
that will permit acceptance of the inspec- 
tion lot or batch. (Ref. 1.) 

*1 acceptance sampling plan. An accept/reject 
test whose purpose is to accept or reject a 
lot of items or material. 

Note 1. Rejection may involve 100% 
inspection or some other scheme rather 
than outright rejection. 

Note 2. These plans often come in sets, so 
that the user can pick the best one of the 
set for his purposes. 

See also:  accept/reject test. 

Note 3. Each acceptance sampling plan has 
an accept/reject (decision) boundary in the 
"number of failures (defects)" vs "amount 
of sampling" plans. If the "reject line" has 
m values it is an m-sample plan, "m - 1" is 
most common and is referred to as a 
single-sample plan, "m = 2" is referred to as 
a double-sample plan, "m > 2" is referred 
to as a multiple-sample plan, "m » 2" 
often is referred to as a truncated 
sequential-sample plan. 

Note 4. The data can be used to estimate a 
parameter of the probability distribution, 
but often the sampling characteristics of 
such an estimator are not easy to calculate. 

2 acceptance  sampling plan.  A specific plan 
that states the sample size or sizes to be 
used   and  the  associated  acceptance 
rejection criteria. (Ref. 3.) 

and 

Note: A specific acceptance sampling plan 
may be developed for any acceptance 
situation, but inspection systems usually 
include sets of acceptance sampling plans in 
which lot sizes, sample sizes, and accep- 
tance criteria are related. 

3 acceptance sampling plan. A sampling plan 
indicates the number of units of product 
from each lot or batch which are to be 
inspected (sample size or series of sample 
sizes) and the criteria for determining the 
acceptability of the lot or batch (accep- 
tance and rejection numbers). (Definition 
of sampling-plan from Ref. 7.) 

*' acceptance test. Test to determine con- 
formance to specifications/requirements 
and which is used to determine if the item 
can be accepted at that point in the 
life-cycle. 

Note 1. If the item is accepted, the 
life-cycle continues. If the item is not 
accepted, continuing with development of 
the item is done according to contract 
and/or agreement of all parties concerned. 

Note 2. See also:  Acceptance in Ref. 1. 

2 acceptance test. (1) A test to demonstrate 
the degree of compliance of a device with 
purchaser's requirements. (2) A conform- 
ance test (in contrast, is) . . . without 
implication of contractual relations ... . 
(Ref. 5.) 

active element. A part that converts or 
controls energy; e.g., transistor, diode, 
electron tube, relay, valve, motor, hydrau- 
lic pump. (Ref. 6.) 

active element group.  An active element and 
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its associated supporting (passive) parts; 
e.g., an amplifier circuit, a relay circuit, a 
purnp and its plumbing and fittings. (Ref. 
6.) 

ambient. Used to denote surrounding, en- 
compassing, or local conditions. Usually 
applied to environments (e.g., ambient 
temperature, ambient pressure). 

arithmetic mean. The arithmetic mean of n 
numbers is the sum of the n numbers, 
divided by n. 

Note. This is the conventional average. The 
term is used to distinguish it from other 
kinds of mean; e.g., geometric, harmonic. 

assembly. A number of parts or subassem- 
blies joined together to perform a specific 
function. (Ref. 6.) 

assurance. A qualitative term relating to 
degree of belief. It often is applied to the 
achievement of program objectives. 

*'attribute. A characteristic or property of 
an item such that the item is presumed 
either to have it or not to have it; there is 
no middle ground. 

Note. The term is used most often in 
testing where the attribute is equivalent to 
good/bad. 

attribute. A characteristic or property 
which is appraised in terms of whether it 
does or does not exist (e.g., go or not-go) 
with respect to a given requirement. 
(Adapted from Ref. 1.) 

3 attribute. A term used to designate a 
method of measurement whereby units are 
examined by noting the presence (or 
absence) of some characteristic or attribute 
in each of the units in the group under 
consideration and by counting how many 
units do (or do not) possess it. Inspection 

by attributes can be of two kinds—either 
the unit of product is classified simply as 
defective or nondefective or the number of 
defects in the unit of product is counted, 
with respect to a given requirement or set 
of requirements. (Adapted from Ref. 3.) 

attribute testing. Testing to evaluate whether 
or not an item possesses a specified 
attribute. See: go/no-go. 

automatic test equipment (ATE). Test equip- 
ment that contains provisions for automat- 
ically performing a series of pre- 
programmed tests. 

Note. It usually is presumed that the ATE 
evaluates the test results in some way. 

'availability. The fraction of time that the 
system is actually capable of performing its 
mission. (Ref. 5.) 

2 availability. A measure of the degree to 
which an item is in the operable and 
committable state at the start of the 
mission, when the mission is called for at 
an unknown (random) point in time. (Ref. 
2.) 

availability   (operational    readiness).    The 
probability that at any point in time the 
system is either operating satisfactorily or 
ready to be placed in operation on demand 
when used under stated conditions. 

4s-availability. The fraction of time, in the 
long run, that an item is up. 

Note 1. The item is presumed to have only 
2 states (up and down) and to cycle 
between them. 

Note 2. The definition of being up can be 
important in a redundant system. 

availability, intrinsic. The availability, except 
that   the   times  considered  are  operating 
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time and active repair time. (Adapted from 
Ref. 6.) 

Added Note: 
Note. This definition does not have wide- 
spread use and the term can be misleading. 
It would be wise to define it wherever it is 
used. 

average. A general term. It often means 
arithmetic mean, but can refer to «-expect- 
ed value, median, mode, or some other 
measure of the general location of the data 
values. 

*i average outgoing quality (AOQ). The ex- 
pected value (for a given acceptance 
sampling plan) of the outgoing quality of a 
lot, for a fixed incoming quality, when all 
rejected lots have been replaced by equal 
lots of perfect quality and all accepted lots 
are unchanged. 

Note  1. Quality is measured by fraction 
defective. The' terms AOQ and AOQL are 
not applicable otherwise. 

Note 2. The inspection/sorting/replace- 
ment process usually is assumed to be 
perfect. 

Note 3. It often is assumed that all bad 
parts found during inspection are replaced 
by good parts. Slight discrepancies in 
calculated AOQ's can occur if this fact is 
ignored when it is true. 

Note 4. As implied in the definition, the 
AOQ is a function of incoming quality. 

2 average outgoing quality (AOQ). The s-ex- 
pected average quality of outgoing product 
for a given value of incoming product 
quality. The AOQ is computed over all 
accepted lots plus all rejected lots after the 
latter have been inspected 100% and the 
defective units replaced by good units. 
(Ref. 3.) 

Note. In practical cases, different numeri- 
cal values of AOQ may be obtained, 
depending on whether ur not the defectives 
found in samples or in 100% inspection of 
rejected lots are replaced by good units. 

3 average outgoing quality (AOQ). The average 
quality of outgoing product including all 
accepted lots, plus all rejected lots after the 
rejected lots have been effectively 100 
percent inspected and all defectives re- 
placed by nondefectives. (Refs. 1 and 7.) 

'average outgoing quality limit (AOQL). The 
maximum AOQ over all possible values of 
incoming product quality, for a given 
acceptance sampling plan. (Ref. 3.) 

2 average outgoing quality limit (AOQL). The 
maximum AOQ for all possible incoming 
qualities for a given sampling plan. 
(Adapted from Ref. 1.) 

average sample number (ASN). The average 
number of sample units inspected per lot in 
reaching decisions to accept or reject. (Ref. 
3.) 

Added Notes: 
Note 1. The ASN usually is applied only 
where the sample number (size) is a 
random variable. 

Note    2. It    is   usually   a   function   of 
incoming quality. 

B 

bad-as-old. A term which describes repair. 
The repaired item is indistinguishable from 
a nonfailed item with the same operating 
history. Its internal clock stays the same as 
it was just before failure. 

Note. If   the   failure   rate   is   constant, 
good-as-new and bad-as-old are the same. 

basic failure rate. The basic failure rate of an 
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item derived from the catastrophic failure 
rate of its parts, before the application of 
use and tolerance factors. The failure rates 
contained in MIL-HDBK-217 are "base" 
failure rates. (Adapted from Ref. 6.) 

bathtub curve. A plot of failure rate of an 
item (whether repairable or not) vs time. 
The failure rate initially decreases, then 
stays reasonably constant, then begins to 
rise rather rapidly. It has the shape of a 
bathtub. 

Note. Not all items have this behavior. 

bias. The difference between the s-expected 
value of an estimator and the value of the 
true parameter. 

breadboard model. A preliminary assembly 
of parts to test the feasibility of an item or 
principle without regard to eventual design 
or form. 

Note. It usually refers to a small collection 
of electronic parts. 

*1 burn-in. The initial operation of an item 
for the purpose of rejecting or repairing it 
if it performs unsatisfactorily during the 
burn-in period. 

Note 1. The burn-in conditions need not 
be the same as operating conditions. 

Note 2. The purpose is to get rid of those 
items that are more likely to fail in use. 

Note 3. The method of burn-in and 
description of desired results need careful 
attention. Burn-in can do more harm than 
good. 

2 burn-in. The    operation    of   an   item 
stabilize its characteristics. (Ref. 2.) 

to 

item to achieve mission objectives given the 
conditions during the mission. (Ref. 2.) 

Capability. A measure of the ability of an 
item to achieve mission objectives, given 
that the item is working properly during 
the mission. 

censored. A set of data from a fixed sample is 
censored if the data from some of the items 
are missing. 

Note 1. In a censored life test, it is known 
only (for censored items) that they 
survived up to a certain time. 

Note 2. The reason for the censoring in a 
life test must have nothing to do with the 
apparent remaining life of the item. 

Note 3. Statisticians sometimes give special 
names to censoring, depending on which 
order statistics are censored. 

Checkout. Tests or observations on an item to 
determine its condition or status. (Adapted 
from Ref. 2.) 

Added notes: 
Note 1. Checkout is often assumed to be 
perfect, i.e., to judge properly the condi- 
tion of each part and to do no damage to 
anything. Checkouts are rarely perfect. 

Note 2. It sometimes is implied that any 
nonsatisfactory condition is remedied (per- 
fectly or otherwise). 

coefficient of variation. The standard devia- 
tion divided by the mean. 

Note 1. The term is rarely useful except 
for positive random variables. It is not 
defined if the mean is zero, or if the data 
have been coded by anything other than a 
scale factor. 

'capability. A measure of the ability of an 
Note  2. It  is  a  relative  measure  of the 
dispersion of a random variable. 
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complexity level. A measure of the number 
ol" active elements required to perform a 
specific system function. (Ref. 6.) 

s-confidence." A .specialized statistical term. It 
refers to the truth of an assertion about the 
value of a parameter of a probability 
distribution. 

Note 1. s-confidence ought always to be 
distinguished from engineering confidence; 
they are not at all the same thing. One can 
have either without the other. 

Note 3. Incorrect definitions of this and 
related terms often are encountered in the 
engineering literature. 

Note 3. For more details, consult a 
competent statistician or competent statis- 
tics book. 

s-confidence interval. The interval within 
which it is asserted that the parameter of a 
probability distribution lies. 

Note. The interval is a measure of the 
statistical uncertainty in the parameter 
estimate, given that the model is true. 
There might be more important sources of 
uncertainty involved with the model not 
being true. 

See also: s-confidence, s-confidence lim- 
its. 

s-confidence level. The fraction of times an 
s-confidence statement is true. 

Note 1. The larger the s-confidence level, 
the wider the s-confidence interval, for a 
given method of generating that inierval. 

Note 2. Sometimes the asserted level is a 
lower bound, all that is known is that the 
actual level is above the stated level. This is 
especially common where the random 
variable is discrete. 

Note 3. This refers to the totality of times 
the procedure of calculating an s-confi- 
dence statement from a new set of data is 
effected. 

See also: s-confidence, s-confidence inter- 
val. 

s-confidence    limits.  The 
s-confidence interval. 

extremes    of   an 

Note. When  only 1   limit is given  (along 
'upper" or "lower") the with the modifier 

interval includes the rest of the domain of 
the random variable on the appropriate side 
of the limit. 

s-consistency. A statistical term relating to 
the behavior of an estimator as the sample 
size becomes very large. An estimator is 
s-consistent if it stochastically converges to 
the s-population value as the sample size 
becomes "infinite". It is one of the 
important characteristics of an estimator as 
far as reliability engineers are concerned. 

continuous sampling plan. In acceptance 
sampling, a plan, intended for application 
to a continuous flow of individual units of 
product, that (1) involves acceptance and 
rejection on a unit-by-unit basis and (2) 
uses alternate periods of 100% inspection 
and sampling, the relative amount of 100% 
inspection depending on the quality of 
submitted product. Continuous sampling 
plans usually are characterized by requiring 
that each period of 100% inspection be 
continued until a specified number of 
consecutively inspected units are found 
clear of defects. 

Note. For single-level continuous sampling 
plans, a single sampling rate (e.g., inspect 1 
unit in say 5 or 1 unit in 10) is used during 
sampling. For multilevel continuous sam- 
pling plans, two or more sampling rates 
may be used, the rate at any time 
depending on the quality of submitted 
product. (Adapted from Ref. 3.) 
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controlled part. An item which requires the 
application of specialized manufacturing, 
management, and procurement techniques. 

controlled process. A process which requires 
the application of specialized manufactur- 
ing, management, and procurement tech- 
niques. 

«-correlation. A form of statistical depen- 
dence between 2 variables. Unless other- 
wise stated, linear «-correlation is implied. 

Note. In writing for engineers, it is better 
to write the full phrase "linear «-correla- 
tion" to avoid ambiguity. 

See also: «-correlation coefficient. 

1 «-correlation coefficient. A number between 
- 1 and + 1 which provides a normalized 
measure of linear «-correlation. 

Note 1. See Part Three for mathematical 
expressions (for both discrete and contin- 
uous random variables). 

Note 2. Values of + 1 and - 1 represent a 
deterministic linear relationship. Value of 0 
implies no linear relationship. 

2 «-correlation coefficient. A number between 
- i and + 1 that indicates the degree of 
linear relationship between two sets of 
numbers. Correlations of - 1 and + 1 
represent perfect linear agreement between 
two variables; r = 0 implies no linear 
relationship at all. (Adapted from Ref. 3.) 

cost-effectiveness. A measure of the value 
received (effectiveness) for the resources 
expended (cost). 

criticality. A measure of the indispensability 
of an item or of the function performed by 
an item. 

Note. Criticality is often only coarsely 
quantified. 

criticality ranking. A list of items in the order 
of their decreasing criticality. 

cumulative distribution function Cdf. The 
probability that the random variable whose 
name is X takes on any value less than or 
equal to a value x, e.g., 

F(x) = Cdf {X}  = Pr [X<x] . 

Note 1. The Cdf need not be continuous 
or have a derivative. Its value is 0 below the 
lowest algebraic value of the random 
variable and is 1 above the largest algebraic 
value of the random variable. The Cdf is a 
nondecreasing function of its argument. 

Note 2. It is possible to have a joint Cdf of 
several random variables. 

Note 3. The concept applies equally well 
to discrete and continuous random vari- 
ables. 

See also: pdf, pmf, Sf 

1 debugging. A process of "shakedown opera- 
tion" of a finished equipment performed 
prior to placing it in use. During this 
period, defective parts and workmanship 
errors are cleaned up under test conditions 
that closely simulate field operation. 

Note. The debugging process is not intend- 
ed to detect gross weaknesses in system 
design. These should have been eliminated 
in the preproduction stages. (Adapted from 
Ref. 6.) 

2 debugging. A process to detect and remedy 
inadequacies, preferably prior to operation- 
al use. (Ref. 2.) 

*1 defect. A deviation of an item from some 
ideal state. The ideal state usually is given 
in a formal specification. 
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Note 1. The defect need not be harmful to 
the item in any way, even when it is readily 
detectable. 

Note 2. This unmodified word is often 
misunderstood, because an ordinary mean- 
ing of the word implies "harmful". Thus it 
is always wise to be explicit about the kind 
of defect to which reference is being made. 

Note 3. Improved nondestructive evalua- 
tion techniques often can detect deviations 
that are completely unimportant, even 
from a cosmetic viewpoint. Specifications 
ought to avoid the phrase "detectable 
defect". 

2 defect.  An  instance  of failure  to  meet  a 
requirement imposed on a unit of product 
with respect to a single quality characteris- 
tic. 

Note. The term "defect",as used in quality 
control, signifies a deviation from some 
standard-a condition "in defect of" strict 

'conformance to a requirement. The term 
thus covers a wide range of possible 
severity; on the one hand, it may be merely 
a flaw or a detectable deviation from some 
minimum or maximum limiting value or, 
on the other, a fault sufficiently severe to 
cause an untimely product failure. (Ref. 3.) 

3 defect. Any nonconformance of a character- 
istic with specified requirements. (Ref. 1.) 

1 defect, critical. A. A defect that could result 
in hazardous or unsafe conditions for 
individuals using, maintaining, or depend- 
ing upon the item. 

B. For a i.iajor system—such as aircraft, 
radar, or tank-a defect that could prevent 
performance of its tactical function. 
(Adapted from Ref. 6.) 

2 defect, critical. A defect that judgment and 
experience  indicate  is likely to result in 

hazardous or unsafe conditions for indivi- 
duals using, maintaining, or depending 
upon the product; or a defect that 
judgment and experience indicate is likely 
to prevent performance of the tactical 
function of major end item such as an 
aircraft, communication system, land vehi- 
cle, missile, ship, space vehicle, surveillance 
system, or major part thereof. (Ref. 1.) 

'defective. A unit of product which contains 
one or more defects. (Ref. 1.) 

2defective. A defective unit; a unit of 
product that contains one or more defects 
with respect to the quality characteristics 
under consideration. (Adapted from Ref. 
3.) 

See also:  2 defect. 

dependability. A measure of the item oper- 
ating condition at one or more points 
during the mission, including the effects of 
reliability, maintainability, and survivabil- 
ity, given the item condition(s) at the start 
of the mission. It may be stated as the 
probability that an item will (1) enter or 
occupy any one of its required operational 
modes during a specified mission, (2) 
perform the functions associated with' 
those operational modes. (Adapted from 
Ref. 2.) 

*1 derating. The technique of using an item at 
severity levels below rated values to achieve 
higher reliability. 

Note 1. This is the opposite of accelerated 
testing. 

Note 2. It is not always obvious how to 
derate an item. Considerable knowledge 
about the structure and behavior of the 
item often is required. 

See also: accelerated testing. 

2 derating. (1) Using an item in such a way 
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that applied stresses are below rated values, 
or (2) the lowering of the rating of an item 
in one stress field to allow an increase in 
rating in another stress field. (Ref. 2.) 

design adequacy. The probability that the sys- 
tem will satisfy effectiveness requirements, 
given that the system design satisfies the 
design specification. (Ref. 6.) 

discrimination ratio. A measure of the 
"distance" between the two points on the 
operating characteristic which are used to 
define the acceptance sampling plan. 

Note 1. It is not an absolute measure of 
the discriminating ability of an acceptance 
sampling plan. 

Note 2. It often is used in place of one of 
the measures of quality to define the 
acceptance sampling plan. 

Note 3. It ought always to be defined 
when used; although since it is ambiguous 
and not necessary, its use is wisely avoided. 

Note 4. A given acceptance sampling plan 
can have many discrimination ratios de- 
pending on which 2 points are used to 
define it. 

distribution. General short name for proba- 
bility distribution. 

Note. It is general in that it does not imply 
a particular descriptive format such as pdf 
or Cdf. 

1 downtime. The total time during which the 
system is not in condition to perform its 
intended function. 

Note. Downtime is subdivided convenient- 
ly into active repair time, logistic down- 
time, and administrative downtime. 
(Adapted from Ref. 6.) 

2 downtime. That   element   of  time   during 

which the item is not in condition to 
perform its intended function. 

downtime, administrative. That portion of 
downtime not included under active repair 
time and logistic downtime. (Adapted from 
Ref. 6.) 

downtime, logistic. That portion of down- 
time during which repair is delayed solely 
because of waiting for a replacement part 
or other subdivision of the system. 
(Adapted from Ref. 6.) 

duty cycle. A specified operating time of an 
item, followed by a specified time of 
nonoperation. 

Note. This often is expressed as the 
fraction of operating time for the cycle, 
e.g., the duty cycle is 15%. 

1 early   failure  period. That  period of life, 
after final assembly, in which failures occur 
at an initially high rate because of the 
presence of defective parts and workman- 
ship. (Ref. 6.) 

2 early    failure    period. The    early    period, 
beginning at some stated time and during 
which the failure rate of some items is 
decreasing rapidly. 

Note. This definition applies to the first 
part of the bathtub curve for failure rate. 
(Adapted from Ref. 5.) 

effectiveness. The probability that the prod- 
uct will accomplish an assigned mission 
successfully whenever required. (Ref. 6.) 

s-efficiency. A statistical term relating to the 
dispersion in values of an estimator. It is 
between 0 and 1; and the closer to 1, the 
better. It is one of the important 
characteristics of an estimator as far as 
reliability engineers are concerned. 
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element. One of the constituent parts of 
anything. An element may be a part, a 
subassembly, an assembly, a unit, a set, etc. 
(Adapted from Ref. 6.) 

environment. The aggregate of all the exter- 
nal conditions and influences affecting the 
life and development of the product. (Ref. 
6.) 

equipment. A product consisting of one or 
more units and capable of performing at 
least one specified function. (Ref. 6.) 

s-expected value. A statistical term. If x is a 
random variable, and F(x) is its Cdf, then 
E {JCJ = JxdF(x), where the integration is 
over all x. For continuous random variables 
with a pdf, this reduces to E \x\ = 
/  x  pdf {x} dx. 

For discrete random variables with a pmf, 
this reduces to E \x)  =   T,xnpmf \xn\ 
where the sum is over all n. 

exponential distribution. A  1-parameter dis- 
tribution (X > 0, t > 0) with: 

Pdf{ ,' = Xexp(—Xf) 
Cdf{ A = 1 - exp(-Xr) 
Sf\t \ = exp(—Xr) 
failure rate = X, mean time-to-failure = 

1/X. 

Note   1 . This is the constant failure-rate 
distribution. 

Note 2. This has many convenient proper- 
ties, and so is widely used—even when not 
strictly applicable. 

Note 3. This distribution often is chosen, 
because of its tractability, when there are 
not enough data to reject it. 

Note 4.  Often parameterized with 6 = 1/X. 

Note    5. It    can    be    converted    to    a 

2-parameter   distribution   by   substituting 
(r - t ) for t everywhere. 

'failure. The termination of the ability of an 
item to perform its required function. 
(Refs. 3 and 5.) 

Added notes: 
Note 1. It is presumed that the item either 
is or is not able to perform its required 
function. Partial ability is not considered in 
this definition. 

Note 2. Virtually all failures discussed in 
these Handbooks are random failures. 

2 failure. The inability of an item to perform 
within previously specified limits. 

1 failure, catastrophic.  A failure that is both 
sudden and complete. (Ref. 5.) 

2 failure,   catastrophic. A  sudden  change  in 
the operating characteristics of an item 
resulting in a complete loss of useful 
performance of the item. (Ref. 6.) 

failure, chance. This is a term that is misused 
so often that it ought to be avoided. 
See: failure, random. 

failure, critical. A failure of a component in a 
system such that a large portion of the 
mission will be aborted or such that the 
crew safety is endangered. 

Note. Criticality is often assumed to have 
degrees, as in Failure Modes, Effects, and 
Criticality Analysis. 

failure, degradation. A failure that Occurs as a 
result of a gradual or partial change in the 
operating characteristics of an item. 
(Adapted from Ref. 6.) 

failure, s-dependent. Any failure whose oc- 
currence is s-dependent on other failures. 
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failure, «-independent. Any failure whose 
occurrence is «-independent of other 
failures. 

failure, infant. A failure that occurs during 
the very early life of an item. 

Note 1, The failure-rate is usually de- 
creasing. 

Note 2. It is usually a random failure. 

Note 3. It often is ascribed to grossly bad 
conditions of manufacture, although that 
need not be true. 

1 failure mechanism. The cause in the item of 
the observed failure mode of the item. It is 
one level down from the failure mode. 

Note. See: note on l failure mode. 

See also: failure mode. 

2 failure mechanism. The physical, chemical, 
or other process that results in a failure. 
(Adapted from Ref. 5.) 

1 failure mode. The observable behavior of an 
item when it fails; e.g., failure modes of 
electric motor might be classified as bearing 
seizure, winding short, winding open, 
overheating. 

Note. The distinction between failure 
mode and failure mechanism is arbitrary 
and depends on the level at which 
observations are made. For example, a 
failure mode of a radar is antenna failure, 
the mechanism might be motor failure. If 
the motor is observed, the failure mode 
might be bearing seizure and the failure 
mechanism might be loss of lubrication. If 
the bearing is observed, its failure mode 
might be loss of lubrication, and the failure 
mechanism might be seal failure. If the seal 
is observed, ...  . 

See also: failure mechanism. 

2 failure mode. The effect by which a failure 
is observed; e.g., an open- or short-circuit 
condition, or a gain change. (Adapted from 
Ref. 5.) 

failure mode, effects, and criticality analysis 
(FMECA). An analysis of possible modes 
of failure, their cause, effects, criticalities, 
s-expected frequency of occurrence, and 
means of elimination. 

Note 1. It often is called FMEA (without 
criticality). 

Note 2. The analysis can include more 
such as (1) estimated cost to eliminate or 
mitigate the failure, (2) listing the items in 
ranked order of cost-benefit ratio to fix 
them. 

failure, primary. A failure whose occurrence 
is not caused by other failures. 

Note. This is sometimes ambiguously 
called an independent failure. 

'failure, random. Any failure whose occur- 
rence is unpredictable in an absolute sense 
but which is predictable in a probabilistic 
sense. (Adapted from Ref. 2.) 

Added note. 
Note 1. This term is often improperly used 
to imply "a constant failure rate process" 
or "some state of maturity of a design". 

Note 2. Virtually all failures discussed in 
these Handbooks are random failures. 

2 failure, random. Any failure whose cause 
and/or mechanism make its time of 
occurrence unpredictable. (Ref. 5.) (See: 
added notes in definition 1.) 

*1 failure rate X. A. The conditional probabil- 
ity density that the item will fail just after 
time t, given that the item has not failed up 
to time t. 
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Mt)   =iHlf-\r\/Sf{t\. 

The pdf is normalized by the traction still 
alive at the time. 

Note 1A, lliis definition is only for 
continuous random variables whose Sf is 
well-behaved en nigh for the pdfto be well 
defined. 

Note JA.   In this case (Note I), 

where R(() = Sf { I } is the «-reliability. 

Note 3A. The variable need not be time, it 
can be any continuous measure of life such 
as operating time, calendar time, or 
distance. 

Note 4A. It has many names such as 
hazard rate, force of mortality (especially 
for people's lives), instantaneous failure 
rate <a poor choice), and conditional failure 
rate. 

Note 5A. It must be distinguished from 
the pdf with which it is occasionally 
mistaken in the engineering literature. 

Note bA, Its most popular use is where the 
failure rate X is constant. Then Sf {t \ = 
exp (- Xt). 

B. The   conditional   probability   that  the 
item  will  fail at the next time point t 
given  that the item has not failed before 
that time point t . 

The pmf is normalized by the fraction still 
alive just before / . 

Note IB. This definition is only for 
discrete random variables. 

Note 2B.  The variable need not be discrete 

time points, it can be any time-like discrete 
measure of life such as cycles of operation 
or events. 

Note 3B. This is not a common use of the 
concept. The random variable is virtually 
always continuous. 

General note. 
Note. This  concept is directly applicable 
only to either: 
(a) Nonrepairable items, or 

(b) Repairable items where repair time is 
ignored and repair is to good-as-new. Each 
such item is considered to be brand new. 
For other repairable items, this concept 
must be defined further before it can be 
useful. 

See also: pdf, pmf, Sf. 

2 failure rate. The number of failures of an 
item per unit measure of life (cycles, time, 
miles, events, etc., as applicable for the 
item). (Ref. 2.) 

Added note: 
Note. This may be ambiguous because it 
could refer to the pdf; see: 'failure rate, 
Note 5A. Its use is best avoided unless the 
ambiguity can be avoided. 

3failure rate. The incremental change in the 
number of failures per associated incremen- 
tal change in time. (Adapted from Ref. 5.) 

Added note: 

Note. This may be ambiguous because it 
could refer to the pdf; see: ' failure rate, 
Note 5A. Its use is best avoided unless the 
ambiguity can be avoided. 

"failure rate. The rate of change of the 
number of items that have failed, divided by 
the; number of items surviving. (Adapted from 
Ref. 5—definition of instantaneous failure 
rate.) 

5 failure   rate.     The s-expected  number  of 
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failures in a given time interval. (Adapted 
from Ref. 6.) 

Added note: 

Note. This definition is ambiguous and 
ought not to be used. 

failure, secondary. A failure caused either 
directly or indirectly by the failure of 
another item. (Adapted from Ref. 5.) 

Note. This is sometimes ambiguously 
called a dependent failure. 

*' failure, wearout. Any failure whose time 
of occurrence is governed by a rapidly 
increasing failure rate. 

Note 1. The failure rate must "become 
infinite" as time "becomes infinite". 

Note 2. The conditional mean remaining- 
time to failure must go to zero as the 
consumed life of the item "becomes 
infinite". 

Note 3. An s-normal distribution of life 
satisfies those requirements and often is 
used as a typical wearout distribution. 

Note 4. It may not be possible to tell, by 
looking at a failed item, what classification 
of failure is involved. Some of the 
classifications are for mathematical conven- 
ience only. 

Note 5.  It is usually a random failure. 

2 failure, wearout. Any of the usual failures 
that occur due to mechanical wear of a 
part. 

Note. This is the prototype for definition 

Gaussian distribution. A 2-parameter distribu- 

tion (a > 0) with 

Pdf \x\ exp 
1 (x-p —,, \ 2 

Cdf{x)    = gauJXx) 

Sf\x\     =gaufc(x). 

"mean value of*" =/u, "standard deviation 
of .v" = o. 

Note 1. This has several convenient proper- 
ties, and so is widely used—even when not 
strictly applicable. 

Note 2. This distribution is sometimes 
implied by the phrase "pure random", but 
it may refer to other distributions as well. 

Note 3. More commonly this is called the 
s-normal distribution. 

geometric mean. The geometric mean of n 
numbers is the nth root of their product. 

Note. The term is applicable only to 
positive numbers. 

go/no-go. This expression implies that only 2 
states will be considered: either it "goes" 
or it "doesn't go", i.e., is either good or 
bad. It is the same as attribute. 

good-as-new. A term which describes repair. 
The repaired item is indistinguishable from 
a brand new item. Its internal clock has 
been turned back to zero. 

Note 1. It does not always imply perfec- 
tion, especially if the item contains 
redundancy. 

Note 2. If the failure rate is constant, 
good-as-new and bad-as-old are the same. 

goodness of fit. A statistical term that 
quantifies how likely a sample was to have 
come from a given probability distribution. 
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H 

hazard rate.  Same as failure rate. 

homogeneous. A. The state of being reason- 
ably close together with respect to one or 
more important properties. 

B. Describable by one of the simple, 
common, tractable probability distribu- 
tions. 

Note. This is a qualitative term and 
suggests that its user is satisfied with his 
description of the events. It usually is 
ambiguous and ought to be replaced by a 
more accurately descriptive phrase. 

human engineering. The area of human 
factors, which applies scientific knowledge 
to the design of items to achieve effective 
man-machine integration and utilization. 
(Ref. 2.) 

human factors. A body of scientific facts 
about human characteristics. The term 
covers all biomedical and psychosocial 
considerations: it includes, but is not 
limited to, principles and applications in 
the areas of human engineering, personnel 
selection, training, life support, job per- 
formance aids, and human performance 
evaluation. (Ref. 2.) 

human performance. A measure of man-func- 
tions and actions in a specified environ- 
ment. (Ref. 2.) 

hypothesis. An assertion that is to be tested 
by means of sampling and statistical 
analysis. 

Note. This restricted definition is the way 
the term generally is used in statistical 
reliability procedures. Other, more general, 
definitions are valid also. 

See also: hypothesis, null. 

hypothesis, null. An hypothesis that there is 
no difference between some characteristics 
of the parent populations of several 
different samples, i.e., that the samples 
came from similar populations. 

Note 1. This is usually tested by: 
(a) Being specific about the characteris- 

tics of the population 

(b) Pooling the sample data in some way 

(c) Seeing how often one would get 
samples that differ as much as the 
samples at hand. 

Note 2. An alternate hypothesis is often 
specified or implied. The more narrowly 
and specifically the alternate hypothesis is 
framed, the easier it is to distinguish 
between the null- and alternate-hypotheses. 

Note 3. It is easy to reject the null 
hypothesis when the occurrence of the 
observed sample differences (or worse) 
would be very unlikely. One should, 
however, be very suspicious when the 
samples are very alike—someone may have 
taken liberties (perhaps unintentional or 
well intentioned) with the data. 

Note 4. In some cases, such as goodness- 
of-fit tests, there is only one sample, and 
the null hypothesis is that it came from a 
particular family of distributions. 

Note 5. Example. It is hypothesized that 2 
samples came from 2 s-normal populations 
that have the same standard deviation and 
the same means. (The null hypothesis here 
refers to assuming there is no difference in 
the means.) The alternate hypothesis is 
exactly the same, except that the means are 
different. This is a quite restrictive 
alternate hypothesis and can be tested 
quite sharply. 

Note 6. The discriminating ability depends 
not only on the form of the alternate 
hypothesis but on the amount of the data. 

1-17 



AMCP 706-200 

It is always possible to have so few data 
that one can never reject the null 
hypothesis or so many data that one will 
always reject the null hypothesis. The 
engineering interpretation of the results of 
hypothesis testing are often quite different 
from the statistical interpretation. 

I 

infant mortality. Premature catastrophic fail- 
ures occurring at a much greater rate than 
during the period of useful life prior to the 
onset of substantial wearout. 

the unit of product is counted, with respect 
to a given requirement. (Ref. 1.) 

See also: attribute. 

inspection by variables. Inspection wherein 
certain quality characteristics of a sample 
are evaluated with respect to a continuous 
numerical scale and expressed as precise 
points along this scale. Variable inspections 
record the degree of conformance or 
nonconformance of the unit with specified 
requirements for the quality characteristics 
involved. (Ref. 1.) 

Note 1. This term is used in analogy to the 
human situation, where the bathtub curve 
holds for the death rate. Infants have a 
higher death rate than do older children. 
Many infant deaths are due to subnormal 
characteristics of the infant. Likewise, early 
failures in many equipments are due to 
substandard characteristics. 

Note 2. Infant mortality often can be 
reduced by stringent quality control and 
design efforts. 

1 inspection. The examination and testing of 
supplies and services (including, when 
appropriate, raw materials, components, 
and intermediate assemblies) to determine 
whether they conform to specified require- 
ments. (Ref. 1; Source:ASPR 14-001.3.) 

2 inspection. The  process  of measuring, ex- 
amining, testing, gaging, or otherwise 
comparing the unit with the applicable 
requirements. The unit of product may be 
a single article, a pair, a set; or a specimen, 
a length, an area, a volume; or an 
operation, a service, a performance. (Ref. 
3.) 

inspection by atti'outes. Inspection whereby 
either the unit of product or characteristics 
thereof, is classified simply as defective or 
nondefective, or the number of defects in 

inspection level. An indication of the relative 
sample size for a given amount of product. 
(Ref. 1.) 

Added note: 

Note. When the inspection level is 
changed, the new operating characteristic 
will generally cross the old one near the 
region of "indifference". This means that 
consumer- and producer-risks will both 
generally rise or fall when the inspection is 
reduced or tightened, respectively. 

'inspection lot. A collection of units of 
product bearing identification and treated 
as a unique entity from which a sample is 
to be drawn and inspected to determine 
conformance with the acceptability cri- 
teria. (Ref. 1.) 

2 inspection lot. A collection of similar units 
or a specific quantity of similar material 
offered for inspection and acceptance at 
one time. (Ref. 3.) 

inspection, normal. Inspection in accordance 
with a sampling plan that is used under 
ordinary circumstance. (Ref. 3.) 

See also: inspection level. 

inspection, reduced. Inspection in accordance 
with   a   sampling  plan   requiring  smaller 
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sample sizes than those used in normal 
inspection. Reduced inspection is used in 
some inspection systems as an economy 
measure when the level of submitted 
quality is sufficiently good and other stated 
conditions apply. (Ref. 3.) 

Note. The criteria for determining when 
quality is "sufficiently good" must be 
defined in objective terms for any given 
inspection system. 

See also: inspection level. 

'inspection, tightened. Inspection under a 
sampling plan using the same quality level 
as for normal inspection, but requiring 
more stringent acceptance criteria. (Ref. 1.) 
(Source: MIL-STD-109A.) 

See also: inspection level. 

2 inspection, tightened. Inspection in accor- 
dance with a sampling plan that has more 
strict acceptance criteria than those used in 
normal inspection. Tightened inspection is 
used in some inspection systems as a 
protective measure when the level of 
submitted quality is sufficiently poor. It is 
expected that the higher rate of rejections 
will lead the supplier to improve the 
quality of submitted product. (Ref. 3.) 

Note. The criteria for determining when 
quality, is "sufficiently poor" must be 
defined in objective terms for any given 
inspection system. 

See also: inspection level. 

item. A very general term. It can refer to 
anything, from very small parts to very 
large systems. 

Note. This term often is used to avoid 
being specific about the size or complexity 
of the thing to which reference is made. 

life test. A test, usually of several items, 
made for the purpose of estimating some 
characteristic(s) of the probability distribu- 
tion of life. 

longevity. Length of useful life of a product, 
to its ultimate wearout requiring complete 
rehabilitation. This is a term generally 
applied in the definition of a safe, useful 
life for an equipment or system under the 
conditions of storage and use to which it 
will be exposed during its lifetime. 

lot. See: inspection lot. 

lot quality. The true fraction defective in a 
lot. 

Note. This applies to attributes. Other 
definitions would be needed for variables. 

"■'lot tolerance percent defective (LTPD). A 
point on the quality coordinate of the 
operating characteristic of an attribute 
acceptance-sampling-plan which is in the 
region of bad' quality and reasonably low 
acceptance probability. 

Note 1. The rejection probability at the 
LTPD is often called the consumer risk (3. 

Note 2. The conventional definitions 
{see: defs. 2 and 3) tend to endow this 
point with very special properties which it 
does not really have. Conventionally this 
point (LTPD, )3) is one of two that define 
the acceptance sampling plan and its 
operating characteristic. But any 2 points 
on that operating characteristic will gener- 
ate exactly the same acceptance sampling 
plan. That is why this modified, more 
usable definition is also given. 

Nöte 3. An example of an LTPD is 20% 
defective at an acceptance probability 
(consumer risk) of 10%. 
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Note 4. The term itself can be very 
misleading, especially to non-specialists in 
Quality Control. Its use ought to be 
avoided in material written for such people. 

2 lot tolerance percent defective (LTPD). Ex- 
pressed in percent defective, the poorest 
quality in an individual lot that should be 
accepted. Also referred to as rejectable 
quality level (RQL). (Ref. 3.) 

Note. The LTPD is used as a basis for some 
inspection systems and commonly is 
associated with a small consumer's risk. 

M 

«-maintainability. A characteristic of design 
and installation which is expressed as the 
probability that an item will be retained in 
or restored to a specified condition within 
a given period of time, when the 
maintenance is performed in accordance 
with prescribed procedures and resources. 
(Refs. 1 and 2.) 

maintenance. All actions necessary for retain- 
ing an item in or restoring it to a specified 
condition. (Ref. 2.) 

Added note: 

Note. Maintenance usually is assumed to 
be   perfect,   i.e.,   to   restore  all parts to 
good-as-new and to do no damage to 
anything. The assumption is rarely true. 

maintenance, corrective. This is the same as 
repair. 

See also: maintenance. 

maintenance,   preventive. The   maintenance 
performed in an attempt to retain an item 
in a specified condition by providing 
systematic inspection, detection and pre- 
vention of incipient failure. (Adapted from 
Ref. 2.) 

See also: maintenance (and added note). 

maintenance ratio. The man-hours of mainte- 
nance required to support each hour of 
operation. 

Note. This figure reflects the frequency of 
failure of the system, the amount of time 
required to locate and replace the faulty 
part, and to some extent the overall 
efficiency of the maintenance organization. 
This method of measurement is valuable 
primarily to operating agencies, since, 
under a given set of operating conditions, it 
provides a figure of merit for use in 
estimating maintenance manpower require- 
ments. The numerical value for mainte- 
nance ratio may vary from a very poor 
rating of 5 or 10, down to a very good 
rating of 0.25 or less. (Adapted from Ref. 
6.) 

maintenance time, corrective. See: repair 
time. 

malfunction. Anything that requires repair. It 
is purposely a general word. 

Note. It can be anything from a minor 
degradation to a complete system break- 
down. 

marginal testing. A test in which item 
environments such as line voltage or 
temperature are changed to worsen (revers- 
ibly) the performance. Its purpose is to 
find out how much margin is left in the 
item for degradation. 

mean. A. The arithmetic mean; the «-expect- 
ed value. 

B. As specifically modified and de- 
fined, e.g., harmonic mean (recipro- 
cals), geometric mean (a product), 
logarithmic mean (logs). 

Note. Definition A is implied unless 
otherwise modified. It is wise to be explicit 
if there is any possibility of misunderstand- 
ing. 
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mean cycles-between-failures. See: mean life- 
between-failures. 

mean cycles-to-failure. See: mean life. 

mean    distance-between-failures. See:    mean 
life-between-failures. 

mean distance-to-failure. See: mean life. 

mean life.   S        R(t)dt 

where 
R(t)     = the «-reliability of the item 

T    = the   interval   over  which  the 
mean life is desired, usually the 
useful life(longevity). 

Note 1. The concept is defined only for 
items which are either 
(a) Not repaired, or 
(b) Repaired to a good-as-new condition, 

and returned to stock, i.e., after repair 
they are treated as brand new items. 
The repair process itself is irrelevant to 
the concept. 

Note 2. T is "infinity" in most definitions. 
Suppose R(t) = exp (- Xf), the often 
treated  case.  Then 

MTF= [1 -exp(-Xr)]/X. 

(a) Suppose T is short compared to 1 /X, 
i.e.,X7«l.Theytf77^7\ 

(b) Suppose 7" is long compared to 1/X, i.e., 
\T»\.TheMTF^ 1/X. 

This example helps to clear the confusion 
between 1/X (which is often called the 
mean-life) and the longevity T. If the 
longevity is "infinite", then the mean life 
(for constant failure rate) is 1/X.-The mean 
lives in the literature are virtually always 
1/X, the distinction in this note is very 
rarely made elsewhere. 

Note 3. The concept is applicable to any 
measure of life, such as calendar time, 
operating    time,    cycles    of    something, 

distance, or events. The phrase is ambig- 
uous unless the measure of life is clearly 
and explicitly defined. 

Note 4. When T-* °°, the MTF'-*■ °° for 
some «-reliability functions. In that case, it 
is important that T not be allowed to "go 
to infinity". 

Note 5. For a sample of A', mean life is just 
the usual average life-add the lives of N 
units, and divide by N. 

Note 6. There are many definitions of this 
concept in the literature, some of which are 
misleading and/or ambiguous. Be extremely 
wary of any definition that is not 
equivalent to the one given here. 

Note 7. The «-reliability of an item is a 
function of many things, e.g., all the 
mission conditions. 

Note 8. This concept may be modified by 
such terms as estimated, extrapolated, or 
observed. See Ref. 5, pp. 340-341. 

See also: «-reliability. 

mean life-between-failures. This concept is 
the same as mean life except that it is for 
repaired items, and is the mean up-duration 
of the item. The formula is the same as for 
mean life except that R(t) is interpreted as 
the distribution of up-durations. 

Note 1. The concept is applied, virtually 
always, only to items where the up-dura- 
tions are exponentially distributed, i.e., 
R( t) = exp (- X0- If it is applied to any 
other up-duration distribution, there are 
severe conceptual difficulties and the whole 
repair philosophy must be carefully and 
explicitly detailed. With exponentially 
distributed up-durations (usual case) the 
repair process itself is irrelevant to the 
concept. 

Note 2.  When  up-durations are exponen- 
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tially distributed (rate parameter X), the 
bad-as-old and good-as-new repair philo- 
sophies are exactly the same, because the 
item at any point in its up-duration has the 
same R(t) as at any other point, or as any, 
other item with the same rate parameter. If 
the down-durations are ignored (com- 
pressed to zero), then the failure events 
form a Poisson process with rate parameter 
X. 

Note 3. The concept is only applied when 
XT » 1 so that mean life between failures 
is 1/X. (See: mean life, Note 2.) If one tries 
to apply it in other situations, the 
definition must be extended to include the 
entire maintenance philosophy. 

Note 4. The concept is applicable to any 
measure of life, such as calendar time, 
operating    time,    cycles    of   something, 
distance, or events. 

Note    5. For   a 
up-duration   is 

sample 
just   the 

of   N,    mean 
usual   average 

up-duration-add the up-durations of N 
units, and divide by N. 

Note 6. There are many definitions of this 
concept in the literature, some of which are 
misleading and/or ambiguous. Be extremely 
wary of any definition that is not 
equivalent to the one given here. 

Note 7. The up-duration of an item is a 
function of many things, e.g., all the 
mission conditions. 

Note 8. This concept may be modified by 
such terms as estimated, extrapolated, or 
observed. See: Ref. 5, pp. 340-341. 

See also:  mean life, «-reliability. 

mean square error (mse). A property of a 
statistical estimator. It is similar to variance 
except that it is referred to the true 
population mean instead of its own mean. 

mse = (bias)2 + variance 

Note. The mse is often a very useful 
concept, more so than variance. But the 
mse is much less tractable than variance 
and so is less often used. 

*'mean time-between-failures (MTBF). See: 
mean life-between-failures. 

2 mean time-bet ween-failures (MTBF). For a 
particular interval, the total functioning life 
of a population of an item divided by the 
total number of failures within the 
population during the measurement inter- 
val. The definition holds for time, cycles, 
miles, events, or other measure of life units. 
(Ref. 2.) 

mean time-to-failure (MTF). See: mean life. 

mean time-to-first-failure (MTFF). Same as 
mean life, but can apply to repairable 
equipment (although behavior subsequent 
to the first failure is irrelevant unless the 
item is restored to good-as-new and is 
treated as any other brand new item). 

♦'mean   time-to-repair   (MTTR). Similar 
mean life except that repair time is 
instead of life 

to 
used 

I MTTR = (   G (f) dt 

where 
G(t) = Cdf of repair time 
G(t) & 1 - G(t) 

T = maximum allowed repair time, 
i.e., item is treated as nonrepair- 
able at this echelon and is 
discarded or sent to a higher 
echelon for repair. 

Note 1. The value of T can be important 
for distributions with very long tails, e.g., 
lognormal. 

Note   2.  Suppose   the   repair   rate, 
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H = -jr [_ßn G{t)], is constant, then 

G(t)     = exp (- lit) and 
MTTR =[l-exp(.-nT)]/n 

If T is long compared to 1/u, the usual 
case, then MTTR = 1/p. This supposition 
of constant repair rate is not considered to 
be realistic although it is often made. 
Conventional wisdom suggests a lognormal 
distribution. 

Note 3. See: notes on mean life. 

2 mean time-to-repair (MTTR). The total cor- 
rective maintenance time divided by the 
total number of corrective maintenance 
actions during a given period of time. (Ref. 
2.) 

mean time-to-xxxx (MTX). This is simply the 
arithmetic mean (for a sample) or the 
s-expected value (for a population) of the 
xxxxtime. 

-J: 0 it)dt MTX 

where 
xxxx    = any event 

Note 2. The mission can consist of 
sub-missions (phases) each of which is 
defined as a mission in itself. The 
sub-missions can be time sequential or 
occur at the same time (e.g., multiple 
missions). 

module. An item which is packaged for ease 
of maintenance of the next higher level of 
assembly. (Adapted from Ref. 6.) 

N 

s-normal distribution. See: Gaussian distribu- 
tion. 

operating characteristic (OC). A. For an 
accept/reject test: the relationship between 
probability of accepting an hypothesis and 
the true value of a parameter in that 
hypothesis. 

B. For acceptance sampling: the relation- 
ship between probability of accepting a lot 
and the true quality (usually measured by 
fraction defective) of the lot. 

the    maximum   considered 
xxxxtime 

Note   1. Probability of acceptance is the 
same as longrun fraction of lots accepted. 

<j>(t)     = Sf of xxxxtime 

See also: mean life. 

mission. The objective or task, together with 
purpose, which clearly indicates the action 
to be taken (Ref. 2.) 

Added notes: 
Note 1. In reliability it is presumed that 
the mission description includes conditions 
under which the performance is to be 
obtained, the time duration (where appro- 
priate), and the definition of failure/suc- 
cess. 

Note 2. The OC is most usually presented 
as a curve and referred to as the OC curve. 

*1 operating      characteristic      curve      (OC 
curve).  The  curve  which shows the rela- 
tionships of the operating characteristic. 

See also: operating characteristic. 

2 operating characteristic curve. The curve of 
a sampling plan which shows the percent- 
age of lots or batches which may be 
expected to be accepted under the 
specified sampling plan for a given process 
quality. (Ref. 1.) 
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3 operating characteristic curve. A. A curve 
showing, for a given sampling plan, the 
probability of accepting a lot, as a function 
of the  lot  quality. 

B. A curve showing, for a given sampling 
plan, the probability of accepting a lot, as a 
function of the quality of the process from 
which the lots come. Also, as used for some 
types of plans—such as chain sampling 
plans and continuous sampling plans-a 
curve showing the percentage of lots, or 
product units, that may be expected to be 
accepted as a function of the process 
quality. (Ref. 3.) 

Note. For sampling plans, the terms OC 
curve, consumer's risk, producer's risk, and 
the like, are used in two senses, referred to 
as type A and type B, depending on 
whether interest centers on (A) probabili- 
ties associated with sampling from a lot of 
stated quality or on (B) probabilities 
associated with sampling the output (series 
of lots, units, etc.) from a process of stated 
quality. For sampling from a lot, the values 
of probabilities, risks, and the like, are 
based on sampling from a finite population, 
and for sampling from a process, they are 
based on sampling from an infinite 
population. 

operational. Of, or pertaining to, the state of 
actual usage (being up, being in operation). 
(Adapted from Ref. 2.) 

overstress. A condition wherein the severity 
levels of operation (use, etc.) are more than 
usual or more than the specification. 

Note. Often the term is applied where the 
stress is increased slowly (perhaps in steps) 
until failure occurs or until an adequate 
ability to resist the stress is demonstrated. 

parallel. Items that are connected so that the 
total flow is through all, and what flows 

through one item does not flow through 
another. 

Note. The term is often ambiguous be- 
cause it can refer to a logic diagram as well 
as a physical diagram, and the two do not 
always agree. It is wise to modify the term 
explicitly to be clear. 

part. An item that will not be disassembled 
for maintenance. 

Note. It is a loose term, and applies to the 
purposes at hand. 

passive element. An element that is not 
active. 

See also: active element. 

population. The totality of the set of items, 
units, elements, measurements, and the 
like, real or conceptual, that is under 
consideration. (Adapted from Ref. 3.) 

Added notes: 

Note 1. A synonym is universe. 

Note 2. In practice, where the sampling is 
actual, rather than hypothetical, the 
population is likely to be defined (by 
working backwards) as that group from 
which the sample was actually a random 
sample. This working backwards may arrive 
at a rather different population than 
originally was intended. The actual vs 
"hoped-for" population has been at the 
root of many statistical errors. 

precision. Degree of mutual agreement 
among individual measurements. Relative 
to a method of test, precision is the degree 
of mutual agreement among individual 
measurements made under prescribed like 
conditions. (Ref. 3.) 

predicted. That which is expected at some 
future date, postulated on analysis of past 
experience. (Adapted from Ref. 2.) 
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probability density function pdf. The deriva- 
tive of the Cdf with respect to the random 
variable. 

Note 1. For continuous random variables 
only. 

Note 2. The Cdf must be well behaved 
enough for the operation to be performed. 
Otherwise the pdf will not be defined at 
the ill behaved places. 

See also: Cdf, pmf. 

probability distribution. A general term that 
refers to the way a random variable is 
distributed. It is often used in association 
with a name such as Gamma, Gaussian, 
exponential, or Weibull. The probability 
distribution has quantitative properties 
such as a Cdf and Sf. If the random variable 
is continuous and well behaved enough, 
there will be a pdf. If the random variable 
is discrete, there will be a pmf. 

probability mass function pmf. The amount 
of probability assigned to each value of the 
random variable. 

Note.  For discrete random variables only. 

See also: Cdf, pdf. 
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stated in the applicable specification, 
including appropriate product identifica- 
tion and test reference with the name and 
plant address of the manufacturer or 
distributor, as applicable. (Source: DSM 
4120.3-M.)(Ref. 1.) 

Quality. The totality of features and char- 
acteristics of a product or service that bear 
on its ability to satisfy a given need. (Ref. 
3.) 

2quality. The composite of all the attributes 
or characteristics, including performance, 
of an item or product. (Source: DOD-D- 
4155.11.) (Ref. 1.) 

'quality assurance. A system of activities 
whose purpose is to provide assurance that 
the overall quality-control job is in fact 
being done effectively. The system involves 
a continuing evaluation of the adequacy 
and effectiveness of the overall quality-con- 
trol program with a view to having 
corrective measures initiated where neces- 
sary. For a specific product or service, this 
involves verifications, audits, and the 
evaluation of the quality factors that affect 
the specification, production, inspection, 
and use of the product or service. (Adapted 
from Ref. 3.) 

See also:  l quality control. 

qualification. The entire process by which 
products are obtained from manufacturers 
or distributors, examined and tested, and 
then identified on a Qualified Products 
list. (Source: DSM 4120.3-M.) (Ref. 1.) 

qualified product. A product that has been 
examined and tested and listed on or 
qualified for inclusion on the applicable 
Qualified Products List. (Source: DSM 
4120.3-M.) (Ref. 1.) 

qualified product list (QPL). A list of 
products, qualified under the requirements 

2 quality assurance. A planned and systematic 
pattern of all actions necessary to provide 
adequate confidence that the item or 
product conforms to established technical 
requirements. (Source: DOD-D-4155.11.) 
(Ref. 1.) 

quality characteristics. Those properties of an 
item or process which can be measured, 
reviewed, or observed, and which are 
identified in the drawings, specifications, or 
contractual requirements. Reliability be- 
comes a quality characteristic when so 
defined. (Ref. 6.) 
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1 quality control (QC). The overall system of 
activities whose purpose is to provide a 
quality of product or service which meets 
the needs of users; also, the use of such a 
system. 

The aim of quality control is to provide 
quality that is satisfactory, adequate, 
dependable, and economic. The overall 
system involves integrating the quality 
aspects of several related steps, including 
the proper specification of what is wanted; 
production to meet the full intent of the 
specification; inspection to determine 
whether the resulting product or service is 
in accordance with the specification; and 
review of usage to provide for revision of 
specification. 

The term "quality control" often is applied 
to specific phases in the overall system of 
activities, as, for example "process quality 
control". 

Note. Broadly, quality control has to do 
with making quality what it should be, and 
quality assurance has to do with making 
sure that quality control is what it should 
be. In some industries, quality assurance is 
used as an all-inclusive term combining 
both functions. (Ref. 3.) 

2 quality   control. A   management   function 
whereby control of quality of raw or 
produced material is exercised for the 
purpose of preventing production of 
defective material. (Ref. 1.) 

'random sample. As commonly used in 
acceptance sampling theory, the process of 
selecting sample units in such a manner 
that all units under consideration have the 
same probability of being selected. 

Note:  Actually, equal probabilities are not 
necessary   for random sampling; what  is 

necessary is that the probability of 
selection be ascertainable. The stated 
properties of published sampling tables, 
however, are based on the assumption of 
random sampling with equal probabilities. 
An acceptable method of random selection 
with equal probabilities is the use of a table 
of pseudorandom numbers in a standard 
manner. 

(The definition of "sampling at random" 
adapted from Ref. 3.) 

See also: population. 

2 random sample. A sample selected in such a 
way that each unit of the population has an 
equal chance of being selected. (Ref. 1.) 

See also: population. 

*1 redundancy. The existence of more than 
one means for accomplishing a given 
function. 

Note 1. Each means of accomplishing the 
function need not be identical. (Adapted 
from Ref. 2.) 

Further notes: 

Note 2. In the qualified definitions of 
redundancy in the Glossary, the collection 
of all means for accomplishing the given 
function is called a group. 

Note 3. The changeover (switching) often 
is presumed to be perfect, i.e., no 
information or product is lost, the 
changeover takes negligible time, the 
system performance never "knows" that 
the failure occurred. Perfection rarely is 
observed in practice. Loss of information in 
computer systems is especially important. 

Note 4. Some action is often necessary to 
disconnect a failed item and possibly to 
connect a good item. If much action is 
necessary, it is often called maintenance. 
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The distinction between maintenance and 
redundancy is one of degree of effort to 
effect the changeover. 

2redundancy. The introduction of auxiliary 
elements and components to a system to 
perform the same functions as other 
elements in the system for the purpose of 
improving reliability and safety. (Ref. 5.) 

*1 redundancy, active. A type of redundancy 
wherein all items in the group are operating 
simultaneously. 

Note 1. A failed item might need to be 
disconnected from the system; e.g., centri- 
fugal pumps physically in parallel, might 
have a check valve physically in series with 
each pump. 

Note 2. The failure behavior of each 
operating item in the group usually is 
presumed to be the same, although that 
behavior might be a function of the 
number of operating units. 

Note 3. This often is presumed to be the 
same, mathematically, as hot standby. 

Note 4. This often is presumed to be the 
opposite of passive redundancy and stand- 
by redundancy. 

See also,  redundancy. 

2 redundancy, active. That redundancy 
wherein all redundant items are operating 
simultaneously rather than being switched on 
when needed. (Refs. 2 and 5.) 

redundancy, passive, 
redundancy. 

This usually is standby 

*1 redundancy, standby. A type of redundan- 
cy wherein some items in the group are not 
operating, i.e., are on standby. 

Note  1. A failed item might need to be 
disconnected from the system. 

Note 2. Some action is usually necessary 
to connect the new item into the system. 

Note 3. The failure behavior of the 
standby items is not always clear when this 
term is used. Often cold standby is implied, 
but warm- or hot-standby might actually be 
occurring. It is wise always to be explicit 
about the failure behavior of standbys—it 
may even be worse than for operating 
items. 

See also: redundancy. 

*2 redundancy, standby. That redundancy 
wherein the alternate means of performing 
the function is inoperative until needed and 
is switched on upon failure of the primary 
means of performing the function. 
(Adapted from Refs. 2 and 5.) 

*1 reliability. The   ability   of   an   item 
complete its mission successfully. 

to 

2 reliability. The ability of an item to perform 
a required function under stated conditions 
for a stated period of time. (Adapted from 
Ref. 5.) 

3reliability. A general term denoting some 
measure of the failure characteristics of an 
item. 

*1 «-reliability. The probability that the item 
successfully completes its mission, given 
that the item was in proper condition at 
the mission beginning. 

Note 1. The characteristics of the mission, 
such as length, environments, and the 
definition of failure must be defined 
clearly. 

Note 2. The method for assuring "proper 
condition at the beginning of the mission" 
must be defined clearly. This is important 
when the item contains any nominal 
redundancy. 
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Note 3. The mission can be either 1-shot 
(such as an explosive bolt) or over a length 
of time, such as a radar. 

Note 4. The mission must be reasonably 
simple, otherwise other concepts will be 
more appropriate, e.g., system effective- 
ness. 

Note 5. The concept can be modified by 
such words as assessed, estimated, pre- 
dicted, extrapolated, or operational. 

Note 6. Sometimes a long range reliability 
implicitly is being considered, and mission 
reliability is to be calculated for a short 
mission during that time. Such a concept 
requires careful delineation of the concep- 
tual model and its implications. See Ref. 5, 
pp. 488-489. 

Note 7. If repair is to be allowed, the 
assumptions concerning repair must be 
stated clearly and explicitly. See notes 
under mean life and mean life-between-fail- 
ures. 

2s-reliability. The probability that an item 
will perform its intended function for a 
specified interval under stated conditions. 
(Refs. 1 and 2.) 

Added note: 

Note. This is the conventional definition. 
It lacks some of the important features of 
1 «-reliability, e.g., "1-shot missions", and 
"condition at mission beginning". 

3 s-reliability. The probability that a device 
will function without failure over a 
specified time period or amount of usage. 

Note 1. This is used most commonly in 
engineering applications. In any case where 
confusion may arise, specify the definition 
being used. 

Note 2. The probability that the system 

will perform its function over the specified 
time should be equal to or greater than the 
reliability. 
(Adapted from Ref. 5.) 

reliability, achieved. The reliability actually 
demonstrated (with appropriate statistical 
considerations) by hardware tests, at a 
given calendar time. 

reliability apportionment. The assignment of 
reliability goals to subitems (e.g., from 
system to its subsystems) in such a way 
that: 
(a) The    item    will    have    the    required 

reliability. 

(b) The resources consumed in meeting the 
goals will be minimized. 

reliability growth. Any design is incomplete, 
inadequate, and wrong in places. The 
failure rate of initially produced items 
often will be 10 times the hoped-for value. 
Reliability growth is the effort, the 
resource commitment, in improving design, 
purchasing, production, inspection proced- 
ures to improve the reliability. 

Note. Reliability growth is one of the main 
reasons that inherent reliability is a poor 
phrase to use. 

s-reliability, inherent. This is a poor term to 
use; it is very ambiguous and subject to 
gross misuse. It can cause much misunder- 
standing. Very often it means s-reliability 
calculated using only those failures that an 
imaginative, aggressive, intelligent designer 
cannot blame on someone else. This 
concept violates the very foundation of 
reliability growth. 

reliability measure. A general term denoting 
the s-reliability, s-unreliability or some 
function thereof. 

Note. This term is used most often when 
the constant failure rate assumption is 
made. The measures usually being consid- 

1-28 



AMCP 706-200 

ered are then s-reliability, «-unreliability, 
failure rate, mean life, mean life-between- 
failures. 

See also:  3reliability. 

s-reliability, mission. See: 's-reliability, Note 
6. 

reliability, operational. This is a vague term. 
It usually refers to a method of calculating 
reliability using handbook failure rates and 
severity factors. Its use is best avoided 
unless its meaning is clearly explained. 

reliability,  predicted.  The  reliability   of an 
equipment computed from its design 
considerations and from the reliability of 
its parts in the intended conditions of use. 
(Ref. 5.) 

Added note: 

Note. The prediction does not say what 
the reliability will be, but what the 
reliability can be if there is a reasonable 
reliability growth program. 

See also: reliability. 

reliability-with-repair. The reliability that can 
be achieved when maintenance is allowed 
under circumstances such that the system is 
never officially down (i.e., any downtime is 
not charged against reliability). 

Note. When using this concept, the circum- 
stances of allowable maintenance and 
definition of system states must be defined 
carefully and explicitly. 

repair. The maintenance performed, as a 
result of failure, to restore an item to a 
specified condition. (Adapted from Ref. 2.) 

risk. The   probability   of   making   a 
decision. 

poor 

See also: risk, consumer; risk, producer. 

♦'risk, consumer ß. A point on the accep- 
tance-probability axis of the operating 
characteristic of an attribute acceptance- 
sampling-plan which is in the region of bad 
quality and reasonably low acceptance 
probability. 

Note 1. The bad quality corresponding to 
ß is often called the lot tolerance percent 
defective (LTPD). 

Note 2. The conventional definition (see: 
def. 2) tends to endow this point with very 
special properties which it does not really 
have. Conventionally this point (LTPD, ß) 
is one of two that define the acceptance 
sampling plan and its operating characteris- 
tic. But any 2 points on that operating 
characteristic will generate exactly the 
same acceptance sampling plan. That is 
why this modified, more usable definition 
is also given. 

See also: lot tolerance percent defective, 
operating characteristic. 

2risk, consumer ß. For a given sampling plan, 
the probability of acceptance for a 
designated numerical value of relatively 
poor submitted quality. 

Note. The exact risk depends on whether 
"submitted quality" relates to lot quality 
or process quality. 

(Adapted from Ref. 3.) 

*l risk, producer a. A point on the rejection- 
probability curve of the operating charac- 
teristic of an attribute acceptance-sampling 
plan which is in the region of good quality 
and reasonably low rejection-probability. 

Note 1. The good quality corresponding to 
a is often called the acceptable quality level 
(AQL). 

Note 2. The conventional definition (see: 
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def. 2) tends to endow this point with very 
special properties which it does not really 
have. Conventionally this point (AQL, a) is 
one of two that define the acceptance 
sampling plan and its operating characteris- 
tic. But any 2 points on that operating 
characteristic will generate exactly the 
same acceptance sampling plan. That is 
why this modified, more usable definition 
is also given. 

See also: acceptable quality level, operat- 
ing characteristic. 

2 risk, producer a. For a given sampling plan, 
the probability of rejection for a designated 
numerical  value 
mitted quality. 

of relatively good sub- 

Note. The exact risk depends on whether 
"submitted quality" relates to lot quality 
or process quality. 

(Adapted from Ref. 3.) 

inspection of the first sample leads to a 
decision to accept, to reject, or to take a 
second sample. The inspection of a second 
sample, when required, then leads to a 
decision to accept or reject. (Source: 
MIL-STD-105) (Adapted from Ref. 1.) 

2sampling plan, double. Sampling inspection 
in which the inspection of the first sample 
leads to a decision to accept a lot, to reject 
it, or to take a second sample; and the 
inspection of a second sample, when 
required, then leads to a decision to accept 
or to reject the lot. (Ref. 3.) 

'sampling plan, multiple. A specific type of 
attribute sampling plan in which a decision 
to accept or reject an inspection lot may be 
reached after one or more samples from 
that inspection lot have been inspected, 
and always will be reached after not more 
than a designated number of samples have 
been inspected. (Source: MIL-STD-105) 
(Adapted from Ref. 1.) 

root mean square (rms). The square root of 
the arithmetic mean of the squares. 

s statistic. See: standard deviation. 

safety. The conservation of human life and 
its effectiveness, and the prevention of 
damage to items, consistent with mission 
requirements. (Ref. 2.) 

safety factor. A general term relating to the 
ability of the item to withstand more than 
the nominal "stresses". 

Note. Whenever this is used in a specific 
sense, it must be clearly defined. 

sampling   plan. See: 
plan. 

acceptance   sampling 

'sampling plan, double. A specific type of 
attribute   sampling   plan   in   which   the 

2 sampling plan, multiple. Sampling inspec- 
tion in which, after each sample is 
inspected, the decision is made to accept a 
lot, to reject it, or to take another sample; 
but in which there is a prescribed 
maximum number of samples, after which 
a decision to accept or to reject the lot 
must be reached. 

Note. Multiple sampling as defined here 
sometimes has been called "sequential 
sampling" or "truncated sequential sam- 
pling". The term "multiple sampling" is 
recommended. 

(The   definition   of 
from Ref. 3.) 

'multiple   sampling" 

sampling plan, sequential. A specific type 
of sampling plan in which the sample units 
are selected one at a time. After each unit 
is inspected, the decision is made to accept, 
reject, or continue inspection until the 
acceptance or rejection criteria are met. 
Sampling terminates when the inspection 
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results of the sample units determine that 
the acceptance or rejection decision can be 
made. The sample size is not fixed in 
advance, but depends on actual inspection 
results. (Source: Handbook H53.) (Ref. 1.) 

Added note: 

Note. In practice most such plans are 
truncated and then become like multiple 
sampling plans. The term multiple is used 
most often when there are only a few 
decision points, say up to 5, whereas the 
term sequential is used most often where 
there are many, say more than 5, decision 
points. 

See also: multiple sampling plan. 

series. Items which are connected so that 
what flows through one item flows through 
another. 

Note. The term is often ambiguous be- 
cause it can refer to a logic diagram as well 
as a physical diagram, and the two do not 
always agree. It is wise to modify the term 
explicitly to be clear. 

severity level. A general term implying the 
degree to which an environment will cause 
damage and/or shorten life. 

*1 «-significance. A statistical term that relates 
to the probability that an observed test 
statistic would be as bad (or worse) than it 
was, if,the hypothesis under test were true. 

Note 1. One must distinguish between 
«-significance and engineering significance; 
there can be one without the other. 

Note 2. It would be wise to obtain the 
services of a competent statistician if 
«-significance tests are to be used. 

2«-significance. Results that show deviations 
between an hypothesis and the observa- 
tions  used   as  a test  of the hypothesis, 

greater than can be explained by random 
variation or chance alone, are called 
statistically significant. (The definition of 
"statistical significance, statistically signifi- 
cant" from Ref. 3.) 

*1 «-significance level. The probability that, if 
the hypothesis under test were true, a 
sample test statistic would be as bad or 
worse than the observed test statistic. 

Note 1. The operating characteristic (prob- 
ability of rejection) gives the «-significance 
level for any given test. 

Note 2. In many situations, there is a 
numerical relationship between «-confi- 
dence and «-significance. 

2«-significance level. The probability (risk) of 
rejecting an hypothesis that is true. This is 
also referred to as producer risk in sampling 
inspection (acceptance sampling). (Adapted 
from Ref. 3.) 

standard deviation. The root mean square 
deviation from the mean. It is a measure of 
dispersion of a random variable or of data. 
Four cases are important: 

(1) For a continuous random variable JC, 

a2 = J (JC - M)
2
 pdf{x)dx 

where 
a      = population standard deviation 

= population mean = fx pdf {x\  dx 
the probability distribution is well 
behaved enough for the expressions 
to have meaning 
the integrations are over all values of 
JC (the domain of JC) 

and 

and 

(2) For a discrete random variable JC , 

o2=J^(xn-n)2pmf{xn) 
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where 

a      = population standard deviation 
ju      = population mean = X   xnpmf xn 

the probability distribution is well 
behaved enough for the expressions 
to have meaning 
the sum is over all values of x   (the n 
domain of x) 

(3) For a finite population of size TV with 
random variable xn, 

.'    N 

'N X>*-*)2 
n = l 

where 
a      - population standard deviation 

JV   n = 1 
x      = population mean — rr 

(4) For   a  sample   of size  N  (from   an 
"infinite" population) with data x , 

N 

'sample     J\J J2>„-*)2 
n = l 

N 

~N -\   2-j(Xn~X) 
n = \ 

where 
a sample   = sample standard deviation 

s = s-statistic 

A' 

x       = sample mean = A / jX„ 
iV n = l 

There is considerable controversy, confu- 
sion, and misunderstanding in the literature 
concerning whether asampie or s is the 
sample standard deviation. The simple 
answer is that it all depends on what you 
want  to  get.  There  is  no  question  that 

0 sample is tne rms deviation from the 
mean, nor that it is the maximum 
likelihood estimator for the population 
standard deviation of an s-normal distribu- 
tion. There is likewise no question that s2 

is the unbiased estimate of the population 
variance (although s is a biased estimate of 
the population standard deviation) and 
that, for s-normal distributions, the s- and 
s2-statistics are extremely useful. But the 
utility of s and s2 for s-normal distributions 
does not make 5 the rms deviation from the 
mean, nor is unbiasedness very important 
for s2 as an estimator for the population 
variance (rarely, if ever, does one wish to 
estimate the population variance for its 
own sake). When the probability distribu- 
tion is s-normal, one is virtually always 
interested in the s-statistic, not the 
asampie because s is used in calculating a 
Student's / statistic, a x2 lv statistic, an 
F-statistic, and for s-confidence or «-signifi- 
cance statements. 

^standby. A reserve item, often considered to 
be part of redundancy. 

Note. Nothing is implied about its failure 
behavior, either absolutely or relative to 
operating equipment. Often cold standby is 
implied, but the term is ambiguous. 

See   also: redundancy. 

standby, cold. A standby which is not 
degrading in any way and which cannot 
fail. Its failure rate is zero and is 
good-as-new when put in service. 

standby, hot. A standby whose failure and 
degradation behavior is exactly that of a 
like operating item. 

Note. Hot standbys are usually indistin- 
guishable from active redundancy. 

standby, warm. A standby whose failure and 
degradation  behavior is  not  specified. It 
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often is presumed to be between hot- and 
cold-standby, but (for mathematical con- 
venience) often is presumed to include 
both. 

Note. It is implied that the failure and 
degradation behavior is never worse than 
hot standby. 

stress. A general and ambiguous term used as 
an extension of its meaning in mechanics as 
that which could cause failure. It does not 
distinguish between those things which 
cause permanent damage (deterioration) 
and those things which do not (in the 
absence of failure). 

See also: severity level. 

subassembly. A. A general term implying a 
lower level than an assembly, i.e., an 
assembly is made up of subassemblies. 

B. Two or more parts which form a portion 
of an assembly, or form a unit replaceable 
as a whole, but having a part or parts which 
are replaceable as individuals. (Ref. 6.) 

See also: assembly. 

subsystem. A major subdivision of a system 
which performs a specified function in the 
overall operation of a system. (Ref. 6.) 

Survivor function Sf. The probability that the 
random variable whose name is X takes on 
any value greater than or equal to a value x, 
e.g., 

F(x) = Sf{X) = Pr{X>x). 

Note 1. The Sf need not be continuous nor 
have a derivative. Its value is 1 below the 
lowest algebraic value of the random 
variable and is 0 above the highest algebraic 
value of the random variable. The Sf is a 
nonincreasing function of its argument. 

Note 2. It is permissible to have a joint Sf 
of several random variables. 

Note 3. The concept applies equally well 
to discrete and continuous random vari- 
ables. For continuous random variables 
with continuous Sf (and thus continuous 
Cdf), Sf + Cdf = 1; otherwise the identity 
does not hold. 

Note 4. Since the identity in Note 3 holds 
so often, sometimes the Sf is defined that 
way. (Where there is no chance of 
misunderstanding, it may appear that way 
in some Parts of this Handbook series.) 

system. A combination of complete oper- 
ating equipments, assemblies, components, 
parts, or accessories interconnected to 
perform a specific operational function. 

test category. Category I: A test in which US 
Army Test and Evaluation Command 
(TECOM) is responsible for establishing the 
test objective, preparation, and approval of 
the plan of test, and the processing and 
distribution of the report of test. The 
results of this category of tests may lead to 
type classification of the materiel undergo- 
ing tests. 

Category II: A test in which TECOM is 
performing a service for the requesting 
agency and in which the test objectives, 
plan of test, and the processing and 
distribution of the report of test are the 
responsibilities of the requestor. 

test severity. The severity level at which a 
test is run. If there is more than one failure 
mode, the concept might be ambiguous 
unless only overall failure rate is consid- 
ered. 

tolerance   failure. A 
failure. 

drift-   or   degradation 

See also:  failure, degradation. 
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tractable. Easy to work with mathematically 
and statistically. 

truncation. A. Deletion of portions of the 
domain of a random variable greater-than 
and/or less-than specified value(s). 

configurations other than those applicable 
to ground based systems. (Adapted from 
Ref. 6.) 

B. (For a sequential test) closing the 
decision boundary so that a decision always 
is made within a reasonable amount of 
testing. 

variable, (in testing) The opposite of attrib- 
ute; i.e., the characteristic under examina- 
tion can have many (or a continuum of) 
values. 

U 

use factor. A factor for adjusting base failure 
rate, as determined from MIL-HDBK-217, 
to specific use environments and packaging 

variance. The square of the standard devia- 
tion. The term often is used in theoretical 
statistics because it avoids taking the square 
root of a calculation. Variance is the 
second central moment. 
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CHAPTER 2 

PROBABILITY DISTRIBUTIONS, SOME CAUTIONS AND NAMES 

2-1  CAUTIONS 

The common tractable PrD's (probability 
distributions) have no magic power to 
transform sample data into absolute knowl- 
edge, but many people act as if they did. 
Some important cautions are listed: 

(1) Avoid assuming that the selected PrD 
represents the physical data outside the range 
of the sample data, merely because the sample 
data might reasonably (statistically) have 
come from it. Gross extrapolation beyond the 
range of the data is very misleading. 

(2) Do not use point estimates of the 
parameters of the PrD without calculating 
some measure of their uncertainty such as 
s-confidence* limits or a standard deviation. 

(3) Avoid fitting sample data too closely 
by brute force, possibly by using a multi- 
parameter PrD for each of several segments of 
the random variable. If one wishes a very 
close fit, there are several old fashioned 
methods such as power series which do not 
clothe brute force in a comely cloak. In 
samples of less than 10 or so, there can be 
tremendous scatter in the shape of a sample 
pdf, all from the same PrD. 

(4) Avoid fitting a PrD to the data merely 
because it can be done. 

(5) Avoid extensive calculations that select 
the family of PrD's which gives the best fit (in 

•The prefix "$-" 
statistical sense. 

indicates the word is being used in the 

some sense) to the sample data. If that is the 
only reason for choosing a family of PrD's, it 
is not a good enough reason. It is especially 
bad practice when the desired results depend 
heavily on the shape of the PrD outside the 
region of the data. 

The reason for all the cautions to the 
amateur analyst (and even some professional 
analysts) is not that he will violate some 
purist theory, but that he will outsmart 
himself. After having outsmarted and fooled 
himself, he will proceed to mislead others. 
One of the main functions of statistics in 
reliability engineering is to tell the engineer 
what he does NOT know from the data. 

The main purpose of fitting a PrD to the 
data is for a summary. Once the data are 
presumed to be a random sample from a PrD, 
there is no need to save the data. 

It is always possible to have so few data 
that they could reasonably have come from 
almost any family of PrD's. It is also always 
possible to have so much data that they could 
not have come from any given family of 
PrD's. 

When the purpose of fitting a PrD to the 
data is to estimate some characteristic of the 
PrD-Q.g., mean, standard deviation, or 
median-then using the corresponding sample 
characteristic directly always ought to be 
considered. That way no delusion of increased 
accuracy is generated by the extra mathemati- 
cal , manipulations. If this can't be done 
because extrapolation is necessary, then the 
uncertainties ought to be faced directly, 
without the delusion of mathematical preci- 
sion. 
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Always ask yourself why you want to do a 
particular statistical calculation, and will it 
really help you, or will it just let you fool 
yourself into thinking you know more about 
your data than you really do. 

(3) csn = chi-square/nu (x2 lv) 

(4) fis = fisheranedecor (F) 

(5) exp = exponential 

(6) wei = weibull 

2-2 NAMING 
TIONS 

PROBABILITY    DISTRIBU- 

Engineers and statisticians generally ap- 
proach statistics from different points of 
view. It is very convenient for an engineer to 
have a name for each function he uses; 
statisticians seem not to mind the lack of 
names for many PrD 's. 

This handbook has adopted the convention 
of giving a base name to each PrD, and then 
adding a suffix to imply a particular function. 
The base name consists of 3 letters which are 
reasonably mnemonic. 

(1) gau    = gaussian 

(2) csq    = chi-square (x2) 

(7) lgn = lognormal 

(8) gam = gamma 

(9) bet = beta 

(10) poi = poisson 

The suffix / implies the Cdf, the suffix 
fc implies the Sf. For continuous Cdfs, the Sf 
is the complement of the Cdf, from which 
name (complement) the c is derived for the 
suffix fc. The suffix hr implies the failure rate 
(hazard rate). The hazard rate for a PrD 
generally is defined for a location parameter 
of zero and a scale parameter of one. 

When each Cdf and 5/have a short name, it 
is much easier to write equations. 
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3-0  LIST OF SYMBOLS 

bin = base name for binomial distri- 
bution 

binf = Cdf for binomial distribution 

binfc - Sf for binomial distribution 

C = s-Confidence 

Cdf = Cumulative distribution func- 
tion 

C, L, U = subscripts that imply a «-con- 
fidence; C is general, L is 
lower, U is upper. 

CMj {   }        = /th central moment 

Conf {  }      = 5-Confidence level 

csqfc = Sf for the chi-square distribu- 
tion 

CV {  } = coefficient       of      variation: 
StDv (   }/E{  } 

E {  } = s- Expected value 

/, x = notation used in linear inter- 
polation    (often    with    sub- 
scripts) 

Ip = incomplete beta function 

A/j- {   } = /th moment about the origin 

NCMj { } = normalized /th central mo- 
moment; CM, {   }/[StDv{   } ]' 

p.N = parameters 

Pdf = probability   density   function 

pmf = probability mass function 

Pr{] = Probability 

PrD = probability distribution 

r = discrete random variable 

R = ^-Reliability 

s- = denotes   statistical   definition 

Sf = Survivor function 

StDv{   } = standard deviation 

variance 

a  uniformly distributed ran 
dorn variable 

= the complement, e.g.,<p= 1-0 
where 0 is any probability 

{•;*}, (".•) = the fixed parameters are listed 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

= estimate 

3-1   INTRODUCTION 

The binomial distribution arises when re- 
peated trials have only 2 outcomes. Each trial 
is under the same conditions as all the 
repeated   trials.   One   of   the   outcomes   is 
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labeled, and the number of times it occurs is 
counted. The probability parameter refers to 
the labeled outcome. The other outcome is 
not considered further. 

The base name bin is given to the binomial 
distribution (for binomial). The suffix / 
implies the Cdf, and the suffix fc implies the 
Sf. The Cdf and Sf are not complementary 
because the random variable is discrete. 

3-2 FORMULAS 

N = number of trials, fixed in advance. N 
is a parameter of the distribution but 
is always known-never estimated 
from the data. 

p = probability parameter. It turns out to 
be the long run relative frequency of 
the labeled outcome. 

r = random variable, r = 0, 1,2,.. .,N 

p = \-p 

pmf{r; p,N} = Mp'piV"~r = pmf{N - r; p, N) 

(3-1) 

Cdf{r;p, N) = binf(r;p, N) = £j(f)p'p"-' 

= binfc(N-r;.p,N) (3-2) 

N I  \ 
Sf{r; p, N) = binfcir; p. N) = £(?)>'?""' 

i-r V   ' 

= binf(N-r;p,N) (3-3) 

Table 3-1 shows a few examples of the 
binomial pmf. Some of the symmetries in the 
binomial distribution are shown in Eqs. 3-1 
through 3-3. 

It is easier to remember the pmf in the 
form of Eq. 3-4. 

pmf{r,, r2; p,, p2, N) = -^77 P1' 'Par* 

Pi   +P2  = 1 

r^r^N (3-4) 

Eq. 3-4 is also easy to extend to the 
multinomial form, e.g., for 4 possible 
outcomes: 

pmf{rx,rit r3, r4,-p,, p2, p3, p4. N) 

= C,!r5r3!r4)p»r,|^raP3rjP/ 

Pi  +P2 +P3 +P4  = 1 

'"I + ?i + ^3 + r4 = N 

E{r;p,N}=Np 

StDv{r;p,N)=(Npp)112 

CV{r;p,N) = (plpN)ul 

CM3{r;p,N}=Npp(p-p) 

NCM3{ r; p, N} = (p- p)KNpp)112 

3-3 TABLES AND CURVES 

Since there are 2 parameters, the distribu- 
tion is tedious and awkward to tabulate. The 
pmf is so easily calculated, it rarely is 
tabulated. One of the most extensive tables is 
Ref. 1. Refs. 2 and 5 have modest tables. Ref. 
3 is reasonably extensive. 

The identity in Eq. 3-5 can provide other 
sources of tables. 

N 

E(")p'PN-'=/Ip(r.N-r+l) (3-5) 

where Ip is the Beta Distribution (Incomplete 
Beta Function), Ref. 4 (Sec. 26.5), and 
Chapter 10. 

3-2 
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E[r,p,N} 
StDv {r;p,/v} 
CV{r;p,/v} 
CM3 {r.p. N) 

NCMi^np.N) 

TABLE 3-1 

BINOMIAL DISTRIBUTION, EXAMPLES 

N = 5 The body of the table gives the binomial pmfir.p, N \ 

p = 0.1 p = 0.2 p = 0.5 p   = 0.8 

0.59 
0.33 
0.073 
0.0081 
0.00045 
0.000010 

0.50 
0.67 
1.34 
0.36 
1.19 

0.33 
0.41 
0.20 
0.051 
0.0064 
0.00032 

1.00 
0.89 
0.89 
0.48 
0.67 

0.0031 
0.16 
0.31 
0.31 
0.16 
0.0031 

2.50 
1.12 
0.45 
0 
0 

0.00032 
0.0064 
0.051 
0.20 
0.41 
0.33 

4.00 
0.89 
0.22 

-0.48 
-0.67 

0.9 

0.000010 
0.00045 
0.0081 
0.073 
0.33 
0.59 

4.50 
0.67 
0.15 
0.36 
1.19 

Note:  All pmf terms have been rounded to 2 significant figures; that is why the terms do not sum to 1. 

The Poisson approximation is useful in 
ordinary reliability work. If p is taken as the 
failure probability, it will be reasonably small 
(if not, very few people are interested in its 
exact value). The approximation is 

l?> N-r . ^PTF] (3-6) 

Eq. 3-6 reduces the number of parameters 
from 2 (p, N) to 1 (pN); it is reasonably good 
as long as r « N and the right hand side 
sums close to 1 for r = 0, ■■■ ■ N, viz, csqfc 
(2n, 2N + 2) * 1 (see Chapter 4). For 
contractual situations the exact formulas 
ought to be used. 

3-4 PARAMETER ESTIMATION 

The parameter N is known. The parameter 
p is estimated from the data. The estimate 

■■■r/N U-7) 

is unbiased and maximum likelihood. If r = 0 
or r = N, Eq. 3-7 is esthetically displeasing to 
many people, although it is still quite true. 
Very often (where r = 0, A0 a s-confidence 

limit is used in place of the point estimate, 
usually corresponding to about 50% s-confi- 
dence level. 

s-Confidence statements are more difficult 
for discrete random variables than for 
continuous random variables. Chapter 12 
discusses the matter thoroughly. 

The usual ^-confidence statements for p are 
of the forms 

Conf{p<pi}<CI (3-8a) 

Conf{p <Pu)>Cv (3-8b) 

Conf {pL <p<pu}>Cu-CL (3-8c) 

where pL and Pu are defined by 

CL = binfc(r; pL, N), or 

CL = binfc(N-[r- l];pL,N) 

Cv = 1 -binf(r;Pu, N) = binfc(r +\;Pu,N) 
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In this form, CL is usually small (say 5%), and 
CL, is usually large (say 95%). Notation for 
s-confidence statements is not at all standard; 
so particular attention must be paid to the 
example forms. Table 3-2 and Fig. 3-1 are 
useful for this type of s-confidence statement. 

Chapter 12 shows that s-confidence state- 
ments for p can also be of the forms 

Cox\i{p<pi)>CL (3-9a) 

Conf{p<py}< Q, (3-9b) 

Conf {p'L <P<Pu) > Cu - CL (3-9c) 

where pL and pL, are defined by 

CL = 1 - binfir;p'L, N )= binfcir + 1;p'Li N) 

Cv = binfc(r; pü, N) 

In this form, as in Eq. 3-8, CL is usually small 
(say, 5%), and Cv is usually large (say, 95%). 
p'L and pjj will be inside the interval pL, pv 

(for r ¥= 0, A')- Table 3-2 also can be used to 
find p'L and p'y. The procedure is to use the 
entry that is one position above the entry 
used to find the corresponding pL and 
Py and then to reverse the inequality with C. 
For the sample in Table 3-2 (N = 10, r = 4), 
write 

Conf{p< 0.552} < 90% 

Conf{p < 0.733} < 90% 

-+Conf{p< 0.267} >  10% 

Conf (0.267 < p< 0.55} < 80% 

Ref. 6 shows some interesting s-confidence 
limits that can be readily calculated (for r 
¥= 0, N). 

3-5 RANDOMIZED       EXACT      s-CONFI- 
DENCE INTERVALS 

Instead of always choosing the worst case, 

Eq. 3-8, exact s-confidence limits can be 
found by randomly choosing a value between 
pL and pi , and/or between pv and p{j. There 
is nothing to lose and everything to gain by 
this procedure because it means not always 
choosing the worst possible case. 

The   equations   to   give   the   randomized 
limits are 

i? = - 
binfc(r;pL,N)-CL 

{rJPLPL 
* A' - r 

binfc(r;pL,N)-CL 

binfc(r; pf.N)- b~infc(r + 1; p*, N) 
(3-10a) 

unless (a) r = 0, and r\< CL\ then use pL = 0 

or (b) r = N, and TJ > C L ; then use pL = 1. 

= binfir; p*g, N) - Q, 

\r)PuPu 

* (3-10b) 
Cu-binfc(r+ \;py,N) 

binfc(r; pi; N) - binfc(r + 1; p*v, N) 

_ binfc(N-r;pl,N)-Cv 

binfc{N - r; ßy, N) - binfc(N - r + 1; py, N) 

unless (a) r = N, and r\ < Cv; then use pv = 1 

or (b) r = 0, and i? > Cv; then use py = 0. 

where T? is a random number from the 
uniform* distribution: 0 < TJ < 1. When TJ = 0, 
p* = pL and Py = Py. If 77 = 1 (consider the 
least upper bound of TJ), p£ = p'L and pv - 

Pu- 

If special tables which give p*L and Py are 
not available, use Table 3-2 to calculate pv, 
Pi and py, pi. Then use a set of tables like 
Ref.  1 to solve Eq. 3-10 by iteration. Table 
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TABLE 3-2 

1-SIDED UPPER s-CONFIDENCE LIMITS FORp (THE BINOMIAL PROBABILITY) (ADAPTED FROM Ref. 7) 

The body of the table gives p    a 1-sided upper s-confidence (90%, 95%, 99%) limit forp.for the form 
Conf |p<pc}>C. 

p = probability of occurrence of labeled event 
r = number of such events in N trials, the random variable 
N = number of trials in which r events occurred, fixed 
C = s-confidence (minimum value) 

Example: For/V= 10, r- 
(See note 1) — 

4, Conf 
Conf 

p < 0.646 
p < 0.812 

> 90% 
>90% 

Conf {0.188<p<0.646} >80% 
Conf {p<0.188 }<10% 

r C = 90% 95% 99% r C = 90% 95% 99% r r = 90% 95% 99% 

N = 2 N - - 3 N - 4 

0 .684 .776 .900 0 .536 .632 .785- 0 .438 .527 .684 
1 .949 .975- .995- 1 .804 .865- .941 1 .680 .751 .859 

2 .965+ .983 .997 2 
3 

.857 

.974 
.902 
.987 

.958 

.997 

N = = 5 N- 6 N = = 7 

0 .369 .451 .602 0 .319 .393 .536 0 .280 .348 .482 
1 .584 .6 57 .778 1 .510 .582 .706 1 .453 .521 .643 
2 .753 .811 .894 2 .667 .729 .827 2 .596 .659 .764 
3 .888 .924 .967 3 .799 .847 .915 + 3 .721 .775- .858 
4 .979 .990 .998 4 .907 .937 .973 4 .830 .871 .929 

5 .983 .991 .998 5 
6 

.921 

.985 + 
.947 
.993 

.977 

.999 

N = 8 N = 9 N = 10 

0 .250 .312 .438 0 .226 .283 .401 0 .206 .259 .369 
1 .406 .471 .590 1 .368 .429 .544 1 .337 .394 .504 
2 .538 .600 .707 2 .490 .550 .656 2 .450 .507 .612 
3 .655* .711 .802 3 .599 .655 + .750 3 .552 .607 .703 
4 .760 .807 .879 4 .699 .749 .829 4 .646 .696 .782 
5 .853 .889 .939 5 .790 .831 .895- 5 .733 .778 .850 

6 .931 .954 .980 6 .871 .902 .947 6 .812 .850 .907 
"7 .987 .994 .999 -T .939 .959 .983 7 .884 .913 .952 

8 .988 .994 .999 8 .945 + .963 .984 
9 .990 .995- .999 

N - 11 N- 12 N = 13 

0 .189 .238 .342 0 .175- .221 .319 0 .162 .206 .298 
1 .310 .364 .470 1 .287 .339 .440 1 .268 .316 .413 
2 .415 + .470 .572 9 .386 .438 .537 2 .360 .410 .506 
3 .511 .564 .660 3 .475 + .527 .622 3 .444 .495- .588 
4 .599 .650 .738 4 .559 .609 .698 4 .523 .573 .661 
5 .682 .729 .806 5 .638 .685- .765 + 5 .598 .645 + .727 

6 .759 .800 .866 6 .712 .755- .825 + 6 .669 .713 .787 
7 .831 .865- .916 7 .781 .819 .879 7 .736 .776 .841 
8 .895 + .921 .957 8 .846 .877 .924 8 .799 .834 .889 
9 .951 .967 .986 9 .904 .928 .961 9 .858 .887 .931 

10 .990 .995 + .999 10 .955- .970 .987 10 .912 .934 .964 

11 .991 .996 .999 11 
12 

.958 

.992 
.972 
.9% 

.988 

.999 

Notes: 
1. If a 1 -sided lower s-confidence limit is desired, use N—r instead of r.p   instead of p and C  instead of C, and 
switch the inequality. See tl.e example. 

2. The +, - after a 5 indicates which way the number can be rounded to fewer decimal places. 
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TABLE 3-2 (Continued) 

N» ■ 14 N = 15 N = 16 

0 .152 .193 .280 0 .142 .181 .264 0 .134 .171 .250 
1 .251 .297 .389 1 .236 .279 .368 1 .222 .264 .349 
2 .337 .385 + .478 2 .317 .363 .453 2 .300 .344 .430 
3 .417 .466 .557 3 .393 .440 .529 3 .371 .417 .503 
4 .492 .540 .627 4 .464 .511 .597 4 .439 .484 .569 
5 .563 .610 .692 5 .532 .577 .660 5 .504 .548 .630 
6 .631 .675- .751 6 .596 .640 .718 6 .565 + .609 .687 
7 .695 + .736 .805 + 7 .658 .700 .771 7 .625- .667 .739 
8 .757 .794 .854 8 .718 .756 .821 8 .682 .721 .788 
9 .815- .847 .898 9 .774 .809 .865 + 9 .737 .773 .834 

10 .869 .896 .936 10 .828 .858 .906 10 .790 .822 .875- 

11 .919 .939 .967 11 .878 .903 .941 11 .839 .868 .912 
12 .961 .974 .989 12 .924 .943 .969 12 .886 .910 .945- 
13 .993 .996 .999 13 .964 .976 .990 13 .929 .947 .971 

14 .993 .997 .999 14 
15 

.966 

.993 
.977 
.997 

.990 

.999 

N = 17 N = 18 N = 19 

0 .127 .162 .237 0 .120 .153 .226 0 .114 .146 .215 + 
1 .210 .250 .332 1 .199 .238 .316 1 .190 .226 .302 
2 .284 .326 .410 2 .269 .310 .391 2 .257 .296 .374 
3 .352 .396 .480 3 .334 .377 .458 3 .319 .359 .439 
4 .416 .461 .543 4 .396 .439 .520 4 .378 .419 .498 
5 .478 .522 .603 5 .455 + .498 .577 5 .434 .476 .554 

6 .537 .580 .658 6 .512 .554 .631 6 .489 .530 .606 
7 .594 .636 .709 7 .567 .608 .681 7 .541 .582 .655 + 
8 .650 .689 .758 8 .620 .659 .729 8 .592 .632 .702 
9 .703 .740 .803 9 .671 .709 .774 9 .642 .680 .746 

10 .754 .788 .845- 10 .721 .756 .816 10 .690 .726 .788 

11 .803 .834 .883 11 .769 .801 .855- 11 .737 .770 .827 
12 .849 .876 .918 12 .815- .844 .890 12 .782 .812 .86 3 
13 .893 .915 + .948 13 .858 .884 .923 13 .825- .853 .897 
14 .933 .950 .973 14 .899 .920 .951 14 .866 .890 .927 
15 .968 .979 .991 15 .937 .953 .975- 15 .905- .925- .954 

16 .994 .997 .999 16 .970 .980 .992 16 .941 .956 .976 
17 .994 .997 .999 17 

18 
.972 
.994 

.981 

.997 
.992 
.999 

N = 20 N = 21 N = 22 

0 .109 .139 .206 0 .104 .133 .197 0 .099 .127 .189 
1 .181 .216 .289 1 .173 .207 .277 1 .166 .198 .266 
2 .245- .283 .358 2 .234 .271 .344 2 .224 .259 .330 
3 .304 .344 .421 3 .291 .329 .404 3 .279 .316 .389 
4 .361 .401 .478 4 .345 + .384 .460 4 .331 .369 .443 
5 .415- .456 .532 5 .397 .437 .512 5 .381 .420 .493 

6 .467 .508 .583 6 .448 .487 .561 6 .430 .468 .541 
7 .518 .558 .631 7 .497 .536 .608 7 .477 .515 + .587 
8 .567 .606 .677 8 .544 .583 .653 8 .523 .561 .630 
9 .615 + .653 .720 9 .590 .628 .695 + 9 .568 .605- .672 

10 .662 .698 .761 10 .636 .672 .736 10 .611 .647 .712 

11 .707 .741 .800 11 .679 .714 .774 11 .654 .689 .750 
12 .751 .783 .837 12 .722 .75ST .811 12 .695 + .729 .786 

13 .793 .823 .871 13 .764 .794 .845 + 13 .736 .767 .821 
14 .834 .860 .902 14 .804 .832 .878 14 .775 + .804 .853 
15 .873 .896 .931 15 .842 .868 .908 15 .813 .840 .884 

16 .910 .929 .956 16 .879 .901 .935- 16 .850 .874 .912 
17 .944 .958 .977 17 .914 .932 .959 17 .885 + .906 .938 
18 .973 .982 .992 18 .946 .960 .978 18 .918 .935 + .961 
19 .995- .997 .999 19 .974 .983 .993 19 .949 .962 .979 

20 .995- .998 1.000 20 
21 

.976 

.995 + 
.984 
.998 

.993 
1.000 
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r 90% 95% 99% r 90% 95% 99% r 90% 95% 99% 

N = 23 N = 24 N = = 25 

0 .095 + .122 .181 0 .091 .117 .175- 0 .088 .133 .168 
1 .159 .190 .256 1 .153 .183 .246 1 .147 .176 .2 37 
2 .215 + .249 .318 2 .207 .240 .307 2 .199 .231 .296 
3 .268 .304 .374 3 .258 .292 .361 3 .248 .282 .349 
4 .318 .355- .427 4 .306 .342 .412 4 .295- .330 .398 
5 .366 .404 .476 5 .352 .389 .460 5 .340 .375 + .444 

6 .413 .451 .522 6 .398 .435- .505- 6 .383 .420 .488 
7 .459 .496 .567 7 .442 .479 .548 7 .426 .46 2 .531 
8 .503 .540 .609 8 .484 .521 .590 8 .467 .504 .571 
9 .546 .583 .650 9 ,526 .563 .630 9 .508 .544 .610 

10 .589 .625- .689 10 .567 .603 .668 10 .548 .583 .648 

11 .630 .665- .727 11 .608 .642 .705- 11 .587 .621 .684 
12 .670 .704 .763 12 .647 .681 .740 12 .62 5- .659 .719 
13 .710 .742 .797 13 .685 + .718 .774 13 .662 .695- .752 
14 .748 .778 .829 14 .723 .754 .806 14 .699 .730 .784 
15 .786 .814 .860 15 .759 .788 .837 15 .735- .764 .815+ 

16 .822 .848 .889 16 .795 + .822 .867 16 .770 .798 .845 + 
17 .857 .880 .916 17 .830 .854 .894 17 .804 .830 .873 
18 .890 .910 .941 18 .863 .885 + .920 18 .837 .861 .899 
19 .92 2 .938 .962 19 .895 + .914 .943 19 .869 .890 .923 
20 .951 .963 .980 20 .925 + .941 .964 20 .899 .918 .946 

21 .977 .984 .993 21 .953 .965 + .981 21 .928 .943 .966 
22 .995 + .998 1.000 22 .978 .985- .994 22 .955 + .966 .982 

23 .996 .998 1.000 23 • 
24 

.979 

.996 
.986 
.998 

.994 
1.000 

N = 26 N = 27 N = 28 

0 .085- .109 .162 0 .082 .105 + .157 0 .079 .101 .152 
1 .142 .170 .229 1 .137 .164 .222 1 .132 .159 .215 
2 .192 .223 .286 2 .185 + .215 + .277 2 .179 .208 .268 
3 .239 .272 .337 3 .231 .263 .326 3 .223 .254 .316 
4 .284 .318 .385- 4 .275- .308 .373- 4 .265 + .298 .361 
5 .328 .363 .430 5 .317 .351 .417 5 .306 .339 .404 

6 .370 .405 + .473 6 .358 .392 .458 6 .346 .380 .445- 
7 .411 .447 .514 7 .397 .432 .498 7 .385- .419 .484 
8 .451 .487 .554 8 .436 .471 .537 8 .422 .457 .521 
9 .491 .526 .592 9 .475- .509 .574 9 .459 .494 .558 

10 .529 .564 .628 10 .512 .547 .610 10 .496 .530 .593 

11 .567 .602 .664 11 .549 .583 .645 + 11 .532 .565 + .627 
12 v,604 .638 .698 12 .585- .618 .679 12 .567 .600 .660 
13 .641 .673 .731 13 .620 .653 .711 13 .601 .634 .692 
14 .676 .708 .763 14 .655 + .687 .743 14 .635 + .667 .723 
15 .711 .742 .794 15 .689 .720 .773 15 .669 .699 .753 

16 .746 .774 .823 16 .723 .752 ,   .802 16 .701 .731 .782 
17 .779 .806 .851 17 .756 .783 .831 17 .733 .762 .810 
18 .812 .837 .878 18 .788 .814 .857 18 .765- .792 .837 
19 .843 .866 .903 19 .819 .843 .883 19 .796 .821 .863 
20 .874 .894 .927 20 .849 .871 .907 20 .826 .849 .888 

21 .903 .921 .948 21 .879 .899 .930 21 .855-+ .876 .911 
22 .931 .946 .967 22 .907 .924 .950 22 .883 .902 .932 
23 .957 .968 .983 23 .934 .948 .968 23 .911 .927 .952 
24 .979 .986 .994 24 .958 .969 .983 24 .936 .950 .969 
25 .996 .998 1.000 25 .980 .987 .994 25 .960 .970 .984 

26 .996 .998 i;ooo 26 
27 

.981 
,996 

.987 

.998 
.995- 

1.000 
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TABLE 3-2  (Continued) 

r 90% 95% 99% r 90% '95% 99% 

N = 29 N = 30 

0 .076 .098 .147 0 .074 .095 + .142 
1 .128 .153 .208 1 .124 .149 .202 
2 .173 .202 .260 2 .168 .195 + .252 
3 .216 .246 .307 3 .209 .239 .298 
4 .257 .288 .350 4 .249 .280 .340 
5 .297 .329 .392 5 .287 .319 .381 

6 .335- .368 .432 6 .325- .357 .420 
7 .372 .406 .470 7 .361 .394 .457 
8 .409 .443 .507 8 .397 .430 .493 
9 .445 + .479 .542 9 .432 .465 + .527 

10 .481 .514 .577 10 .466 .499 .561 

11 .515 + .549 .610 11 .500 .533 .5 94 
12 .550 .583 .643 12 .533 .566 .626 
13 .583 .616 .674 13 .566 .598 .657 
14 .616 .648 .705- 14 .599 .6 30 .687 
15 .649 .680 .734 15 .630 .661 .716 

16 .681 .711. .763 16 .662 .692 .744 
17 .712 .741 .791 17 .692 .721 .772 
18 .743 .771 .818 18 .723 .750 .799 
19 .774 .800 .843 19 .752 .779 .824 
20 .803 .828 .868 20 .782 .807 .849 

21 .832 .855- .892 21 .810 .834 .873 
22 .860 .881 .914 22 .838 .860 .896 
23 .888 .906 .935- 23 .865 + .885 + .917 
24 .914 .930 .954 24 .891 .909 .937 
25 .938 .951 .970 25 .917 .932 .955 + 

26 .961 .971 .985- 26 .941 .953 .972 
27 .982 .988 .995- 27 .963 .972 .985 + 
28 .996 .998 1.000 /    28 .982 .988 .995- 

29 .996 .998 1.000 

3-3 is a copy of pages 10, 579, & 580, Ref. 1, 
and is used to illustrate the procedure of 
finding p* andp^ 

A handy random number generator is a 
coin, flipped several times. Decide whether 
heads is to be 0 or 1; tails is the reverse. Then 
multiply the result of the first flip by 0.5, the 
second flip by 0.25, the third by 0.125, etc. 
(the numbers are 2"fliP), as fine as desired. 
Then add the numbers. Usually 5 or 6 flips 
give a sufficiently continuous random vari- 
able. (For example, heads is 0, tails is 1; the 
sequence is H, T, H, H, T, H. Add 0.25 
+ 0.03125 = 0.28125; truncate to 0.281 for 
convenience.) 

Use the example in Table 3-2: N = 10, r 
= 4, Q, = 90%, CL = 10%. It is shown in Table 
3-2 that pv = 0.646, pL = 0.188. Tt is shown 
just following Eq. 3-9c that pv = 0.552, pL 

0.267. Suppose the random number is 77 
= 0.28125 (same as in the example in the 
paragraph immediately above). Linear inter- 
polation (applied several times) will be used 
to solve Eq. 3-10. The forms of Eq. 3-10 using 
the rightmost expressions are most suitable 
for using Table 3-3. They are written as 

f ,r  ,= binfc(r;xL,N)- 
bin/cir; xL.N)- binfcir +\;xL.N) 

-17 = 0 

(3-1 la) 
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Figure 3-1 (A).   1-sided Upper s-Confidence Limit (80%) for p (adapted from Ref. 7) 

The graph gives the 1-sided upper s-confidence limit forp where 

p   = probability of occurrence of labeled event 
r   = number of such events in N trials, the random variable 
N =  number of trials in which r events occurred, fixed 
p   = rIN 

Note:   If a 1-sided lower s-confidence limit is desired, use N — r instead of r,p instead of p, C instead of C, and 
switch the inequality. See the example in Table 3-2. 
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.02 .04 .16 .18 .20 .06 .OB        .10        .12        .14 

(Estimate of p)   p 

Figure 3-1'(B).   1-sided Upper s-Confidence Limit (90%) for p (adapted from Ref. 7) 

The graph gives the 1-sided uppers-confidence limit for p where 

p = probability of occurrence of labeled event 
r = number of such events in N trials, the random variable 
N = number of trials in which r events occurred, fixed 
p = rIN 

Note:  If a 1-sided lower s-confidence  limit is desired, use  N—r instead of r, p instead of p, C instead of C, and 
switch the inequality. See the example in Table 3-2. 
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Figure 3-1 (C).   1-sided Upper s-Confidence Limit (95%) for p (adapted from Ref. 7) 

The graph gives the 1-sided upper s-confidence limit forp where 

p   = probability of occurrence of labeled event 
r    = number of such events in N trials, the random variable 
N = number of trials in which r events occurred, fixed 
p   = rIN 

Note:   If a 1-sided lower s-confidence  limit is desired, use N—r instead of r,p instead of p, C instead of C, and 
switch the inequality. See the example in Table 3-2. 
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fu<*v) = 
binfc(N-r;xu,N)-Cv 

binfcUN -r\; xv. N)-blnfc([N-r\ + \,xu,N) 
-„ = 0 

(3-1 lb) 

(3-12) 

The solution to Eq. 3-1 la is x^ = Pi- The 
solution to Eq. 3-1 Ibisxv = Py. 

The formula for linear interpolation is 

where x_ and x+ are the smaller and larger 
values of x, respectively; and /+ -/(*+) and 
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Procedure Example 

1. Solve Eq. 3-1 la first. Usex___ = pL and x+ 

= p'L . The values of/are known from the 
definition of p{ ,p'L . Use Eq. 3-12 to find 
x     , round off to 2 decimal places. Solve new' L 

Eq. 3-11 a using x - 0.21. 

1. C, 0.10 

X / 
0.188 -0.281 =(-IJ) 

0.267 +0.719 = (1-77) 
0.210 
0.21 +0.113 (new) 

2. Make a new chart, discarding the old pair 
(0.267, 0.719) with the same sign as/„evv . 
Repeat the linear interpolation and round 
off. 

X / 
0.188 -0.281 
0.21 +0.113 
0.204   
0.20 -0.044 (new) 

3. x is now isolated to be between 2 con- 3. 
secutive entries in the table. Repeat the 
linear interpolation but do not round off. 
The answer isp£ = 0.203. 

4. Solve Eq. 3-1 lb next. Use x__ = pu,x+ 4. 
= Py ■ Proceed as in Step 1. N-r = 10- 4 
= 6. 

0.20 
0.21 
0.203 

Cu =0.10 

/ 
-0.044 
+0.113 

X / 
0.354 -0.281 =(-T?) 

0.478 +0.719 = (I-77) 
0.389   
0.39 +0.208 (new) 

5. Make new chart and repeat Step 1. X / 
0.354 -0.281 
0.39 +0.208 
0.3747   
0.37 -0.0394 (new) 

6. Make new chart and repeat Step 1. Round      6. 
"up", to bracket the true value. 

X / 
0.37 -0.0394 
0.39 +0.208 
0.373   
0.38 +0.0910 (new) 

7.  Repeat Step 3. The answer isp*v   =0.373;     7.      
p* =0.627. 0.37 

0.38 
0.373 

I_ 
-0.0394 
+0.0910 

8. Make the final s-confidence statement. 8. Conf { 0.203 <p < 0.627 } = 80% 
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TABLE 3-3 

SAMPLE PAGE FROM A BINOMIAL DISTRIBUTION (Ref. 1) 

binfc{c,p,N) i(?) PiP 
N-i 

N = 10 

i 

. 01 

.0956179 

. 004 2662 

.0001138 

.0000 020 

. 02 

, 1 829272 
. 0161776 
, 00086 39 
, OOOO 305 
,0000007 

. 0 3 

.262 57 59 

.0 3 45066 

.0027 64 9 

.0 001471 

.0000054 

.0 00000 1 

. 0 4 

.3 351674 

.058 1538 

.0062137 

.0004426 

.0000218 

.0000007 

. 05 

.4012631 

.0861384 

.01150 36 

.0010285 

.0000 637 

.0 0000 28 

. 00000 01 

. 06 

.4 61384 9 

.1175 880 

.0 188 378 

.002029 3 

.0001517 

.000007 9 

.0000003 

. 07 

.5160 177 

.15 17299 

.028 3421 

.00 3576 1 

.000 3139 

.0000193 

.0000008 

. 08 

.56 56115 

.18788 25 

.04007 54 

.00580 13 

.0005857 

.00004 15 

.0000020 

.0000001 

1 
2 
3 
4 
5 

.6105 839 

.2254 471 

.0540 400 

. 008 8 338 

.0010096 

.65132 16 

.26 39011 

.0701908 

.01279 52 

.001634 9 

.68 81828 

.3027908 

.08 844 35 

.0 17797 2 

.002 5170 

.72 14990 

.3 417250 

.1086818 

.0239 38 8 

.0 0 37 161 

.7515 766 

. 3803 692 
. 1307 64 2 
.0 3130 48 
.0052967 

.778698 4 

. 4 18 4 4 00 

.1545298 

.0 399642 

.007326 3 

.80 31256 

.4 5 57002 

.179803 5 

.0 499 69 8 

.0098 74 1 

.82 50968 

.49 195 36 

.2064 005 

.06 13577 

.0 130101 

6 
7 
8 
9 

.0000 8 10 

.0000045 

.0000002 

.000146 9 

.0000091 

.00000 04 

.000 2507 

.0 00017 3 

.0000008 

.0004 069 

.0000308 

.0000015 

.0006 3 32 

.0000 525 

.0 000 0 29 

.0 0000 0 1 

.0009505 

.0000856 

.000005 1 

. ^ n 00 0 02 

.00 13832 

.0001346 

.0000087 

.00 0000 3 

.0019593 

.00020 51 

.0000142 

.0000006 

tf -17 

1 .8448396 
2 . 5270 412 
3 .234 1305 
4 .074 1472 
5 .0168038 

6 .0037098 
7 .000 304 2 
8 .0000 226 
9 .0000010 

10 

. If 19 

.8625520 .8784233 

.5608 368 .5932435 

.2628010 .2922204 

.0883411 .10 39 261 

.0213229 .0266325 

.003669 4 

.00044 01 

.0000 350 

.0000017 

.00487 57 

.0 006229 

.0000 528 

.0000027 

.0000001 

. 30 

.8926358 

.624 1904 
.3232005 
.12087 39 
.0 3279 3 5 

.006 3694 

. 0008644 

.0000779 

.0000042 

.0000001 

. 21 

.9053 173 
,6536 28 9 
.3525 58 6 
.13914 18 
.0 398 624 

.0081935 

.001178 3 

.0001127 

.0 00006 4 
,0 0000 02 

. 22 

.9166422 

. 6 8 15 306 

.38 31197 

.158673 9 

.0478897 

.0 103936 

.0015804 

.0001599 

.0000097 

.0000003 

. 2 3 

.9267 33 2 

.7078 84 3 

.4 137173 

. 17 9 4034 

.0569 19 6 

.0130167 

.00 2088 5 

.0002232 

.0000143 

.0000004 

. 24 

.93 57111 

.7 3 269 3« 

.44 4 19 49 

.20134 87 

.06 69890 

.0161116 

.00272 2« 

.0003068 

.0000207 

.0 000006 

1 .943686 5 
2 .7559748 
3 .474 4 07 2 
4 .234 124 9 
5 .078 1269 

.0197277 

.00350 57 

.0004158 

.0000 296 

.0000 0 10 

. 26 . 27 . 38 . 39 . 30 

9 
10 

.9507601 .9570237 

.7777550 .7980705 

.5042200 .5335112 

.2479 349 .2725761 

.0903 5 42 .1036831 

.0239148 

. 0044618 
, 0 0 0 5 5 6 2 
.00004 16 
.0000 0 14 

.0 3872 24 

.0056 18 1 

.0007 3 50 

.0000 577 

.0000021 

.9625609 .9674476 .9717525 

.8169646 .8344869 .8506917 

.5621710 .5901015 .6172172 

.2979405 .3239164 .3503893 

.1181171 .1336503 .1502683 

.0 34 1994 

.007 00 39 

.000960 5 

. 0000791 
,0000030 

.0403932 

.0 086 5 07 

.0012420 

.0 001072 

.0 0000 4 2 

.0 473490 

.0 105 921 

.0015904 

.0001437 

.00 0005 9 

. 31 

.97 55 38 1 

.6656 366 

.64 344 4 5 

.3773433 

.167947 5 

.0551097 

.0138637 

.00 30179 

.0001906 

.0000083 

. 32 

,97 68608 
.87 938 21 
.66 872 13 
.40436 36 
.18 665 54 

.06 37149 

.015 50 29 

.0025384 

.0002505 

.0 000113 

1 
3 
3 

9 
10 

. 3 3 

.9817716 

.8919901 

.6929 96« 

.4 316 330 

.2063514 

.0732005 

.0185489 

.003 167 3 

. 000 3 36 3 

.0 0 0 0 15 3 

. 34 

. 9R4 316 6 

.90 352 3 5 

.7162304 

.4569388 

.2269 86 6 

.0835979 

.0 220422 

.0039 319 

.0004 2 14 

.0000 2 0 6 

. 3 5 

.9865373 

.91404 56 

.73 8 3 926 

.48 61730 

.2485045 

.09 49 34 1 

. 02 602< 3 

.0048 2 13 

.000 5 39 9 

.0 000 37 6 

. 36 

. 988 4708 

.92 36190 

.7594637 

.5 132284 

.27064 15 

.1072304 

.0 305376 

. 0056864 

.0008865 

.0000 36« 

. 37 . 38 

.9901507 .9916070 

.9323056 .9401661 

.7794392 .798288 7 

.5400038 .5664030 

.29 39 277 .3176 670 

.120502« .1347603 

.0356252 .0413301 

.0071403 .008607 9 

.0 008 668 .0010 87 1 

.0000491 .00 00626 

. 39 

,9938 66« 
.94 72 594 
,816045 3 
.5923361 
.34 2038 5 

.15 0006 8 

.0476949 

. 0103163 

.0013546 
.0000614 

. 4 0 

.99 395 34 

.95 36426 

.83 27102 
. 6177194 
. 36 689«7 

.16 62386 

.05 476 19 

.01 229 46 

.0016777 

.000 10 49 

1 
2 
3 

. 4 1 

.994 8 68 8 

.9593705 

.848 3007 

.6424762 

.392 1728 

.18 34452 

.0625719 

.014 57 38 

.002 0 658 

.000134 2 

. 42 . 43 

.9956920 .9963 79 7 

.9644958 .9690664 

.8628393 .6763538 

.6665 372 .68 98401 

.4177749 .4436094 

,201609 2 
,0711643 
.0171871 
,002529 5 
.0001708 

.2 2 070 56 

.080 576 3 

.020169 6 

.00 30809 

.0002 161 

. 4 4 

.9969669 

.97 3 1358 

.8 866757 

.712 33 07 

.4 69 5613 

.340703 3 

. 0 906437 

.033 558 3 

.0037335 

. 0003730 

. 4S 

, 9 974 67 0 
,9767 4 29 
,9004 4 03 
,73 39 62 1 
,4955 954 

. 46 

.9978 917 

.9799 3 19 

.9110859 

.7546952 

.5215571 

.2615627 .2832 382 

.1019949 .1140612 

.0273918 .0317105 

.0045022 .0054040 

.0 003 4 05 .000424 2 

. 47 

. 9982S1 1 

.98 27433 

.92085 30 

.7744985 

.54 73730 

. 48 

.99 855 44 

.98 52109 

. 92 978 3» 

.79 334 80 

. 57 395 17 

.30 56772 .3288305 

.1270655 .14 10272 

.0365560 .04197 13 
,0064574 .0076838 
.0005360 .0006493 

1 
2 
3 
4 
5 

.998 6096 

.987 3722 

. 9 379223 

.8 112268 

.598 2047 

.9 9902 3 4 

.9 892 578 

.9453125 

.63812 50 

.6 230469 

6 
7 
8 
9 

10 

.3526 028 

.1559 607 

.048 0003 

.0091026 

.0007 979 

. 3769 5 3 1 

.1718750 

.0546875 

.01074 2 2 

. 00 09 7 6 6 
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Table 3-4 lists randomized 2-sided «-confi- 
dence limits which have special statistical 
properties. They are not equal-tailed «-confi- 
dence limits; they cannot be used separately 
for upper and lower «-confidence limits. See 
Ref. 8 for a more complete discussion. In 
general, the 5-confidence limits in Table 3-4 
will be different from those calculated using 
the methods in this chapter. It is difficult to 
say that one set is better than the other 
except in the narrow statistical sense stated 
for Table 3-4. 

low, or a very low «-confidence that the 
«-reliability    is   very   high.   A   reasonable 
compromise is to choose a «-confidence level 
which is approximately the fraction of success 
in the sample (unless that fraction is 100%). 

If there are no failures, one can reasonably 
choose the «-confidence level equal to the 
minimum 1-sided lower «-confidence limit on 
«-reliability. Fig. 3-2 shows the graph for this 
situation. One could also use the Poisson 
approximation for this case. 

3-6 CHOOSING A s-CONFIDENCE LEVEL 

Choosing an appropriate 5-confidence 
level is always troublesome. Suppose the 
labeled events are failures; so p is the 
probability of failure and p is the «-reliability. 
There is obviously little point in having a very 
high «-confidence that the «-reliability is very 

3-7 EXAMPLES 

3-7.1  EXAMPLE NO. 1 

Ten tests were run with 1 failure. Find the 
5% and 95% 1-sided «-confidence limits on the 
failure probability p; combine them for a 
2-sided «-confidence statement. 
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Procedure Example 

1. The labeled events are failures. State N, r, 
Cv, C,, and p = r/N (by Eq. 3-7). 

1.   N = 10, r= 1 
Cu = 95%, CL = 5% 
p = 0.10 

Use Table 3-2 to find p^and pL . Then make 
the 5-confidence statements. 

2. p. = 0.394 
= 1 -0.995 0.005 

Conf { p < 0.394 J > 95% 
Conf { p < 0.005 | < 5% 
Conf { 0.005 <p< 0.394} 

3. Use Table 3-2 to find p'v and p'L . Then make 3. Py = 0.259 
the ^-confidence statements. p'L = 1 -0.963 0.037 

90% 

Again choose a random number by the 
coin flipping method. Take heads = 0, 
tails = 1. Use linear interpolation in Ref. 1 
to find the exact randomized s-confidence 
interval. Use Table 3-3. 

5. Make the exact ^-confidence statements. 

Conf 
Conf 
Conf 

4. 

p< 0.259 } <95% 
p< 0.037} >5% 
0.037 <p< 0.259 } <90% 

Result is H, H, T, T, T, H (unusual, but true) 
-* 0.125 + 0.0625 + 0.03125 = 0.21875 -»-0.219 

p* lies between 0.006 and 0.007; 
p* = 0.0066. 
p^ lies between 0.37 and 0.38; 
n* 

v 0.378. 

5. Conf ( p < 0.0066 } = 5% 
Conf (p< 0.378} =95% 
Conf j 0.0066 <p < 0.378 } = 90% 
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TABLE 3-4<A) 

NEYMAN-SHORTEST UNBIASED 95% s-CONFIDENCE INTERVALS FORp 
(ADAPTED FROM Ref. 8) 

AMCP 706-200 

n = 3 n = 10 
A r + n 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 
00 50 00 29 00 23 00 18 00 15 00 13 00 11 00 10 00 09 01 
00 75 00 50 00 37 00 31 00 26 00 23 00 20 00 18 00 16 •2 
00 S3 00 59 00 45 00 38 00 32 00 28 00 25 00 22 00 20 •3 
00 87 00 65 00 50 00 42 00 35 00 31 00 28 00 25 00 23 •4 
00 90 00 68 00 54 00 44 00 38 00 34 00 30 00 27 00 25 •5 

00 92 00 71 00 56 00 46 00 41 00 36 00 32 00 29 00 26 •6 
00 93 00 73 00 59 00 48 00 42 00 37 00 33 00 30 00 27 •7 
00 94 00 75 00 60 00 50 00 44 00 39 00 34 00 31 00 29 •8 
00 94 00 76 00 62 00 51 00 45 00 40 00 35 00 32 00 30 •9 
00 95 00 78 00 63 00 53 00 40 00 41 00 36 00 33 00 30 10 

00 10 00 85 00 69 00 58 00 50 00 44 00 40 00 36 00 33 11 
00 10 00 89 00 73 00 62 00 53 00 47 00 42 00 38 00 35 1-2 
00 10 00 92 00 77 00 65 00 56 00 50 00 45 00 40 00 37 1-3 
00 1-0 00 94 00 79 00 67 00 58 00 52 00 46 00 42 00 39 1-4 
©0 10 00 95 00 81 00 69 00 60 00 53 00 48 00 44 00 40 1-5 

00 96 00 83 00 71 00 61 00 55 00 49 00 45 00 41 1-6 
00 96 00 84 00 72 00 63 00 56 00 50 00 46 00 42 1-7 
00 97 00 85 00 73 00 64 00 57 00 51 00 47 00 43 1-8 
00 97 00 86 00 74 00 65 00 58 00 52 00 48 00 44 1-9 
03 97 02 86 01 75 01 66 01 58 01 53 01 48 01 44 20 

02 90 01 79 01 69 01 61 01 55 01 50 01 46 21 
02 93 02 81 01 71 01 63 01 57 01 52 01 48 2-2 
02 95 02 83 01 73 01 65 01 59 01 54 01 50 2-3 
03 96 02 85 02 75 01 67 01 60 01 55 01 51 2-4 
03 97 03 86 02 77 02 68 01 62 01 57 01 52 2-5 

03 88 02 78 02 69 02 63 02 58 01 53 2-6 
04 88 03 79 03 70 02 63 02 59 02 54 2-7 
05 89 04 80 03 71 03 64 03 59 02 55 2-8 
07 90 06 80 05 72 04 65 03 60 03 55 2-9 
10 90 08 81 06 73 05 66 05 61 04 56 30 

08 84 07 75 06 68 05 62 04 58 31 
09 86 07 77 06 70 05 64 05 50 3-2 
09 87 07 79 06 71 06 65 05 60 3-3 
10 88 08 80 07 73 06 66 05 62 3-4 
11 89 09 81 07 74 06 67 06 63 3-5 

09 82 03 75 07 68 06 63 3-6 
11 83 09 73 08 69 07 64 3-7 
12 84 10 76 09 70 08 65 3-8 
13 84 11 77 10 70 09 65 3-9 

lotes: 

15 85 13 

13 
14 
14 
15 
16 

77 

79 
81 
82 
83 
84 

11 

12 
12 
12 
13 
14 

14 
15 
16 
18 
19 

71 

73 
74 
75 
77 
77 

78 
79 
80 
80 
81 

10 

10 
11 
11 
11 
12 

13 
14 
14 
16 
17 

66 

67 
69 
70 
71 
72 

72 
73 
74 
74 
75 

4-0 

41 
4-2 
4-3 
4-4 
4-5 

4-6 
4-7 
4-8 
4-9 
50 

. The pa irs of figures are lower and uppers-confidence limits 

forp given to 2 decimal places. 
17 
18 

76 
78 

51 
5-2 

!. Notation 18 79 5-3 

n   = sample size (in pi. ace of N in the text) 19 
20 

79 
80 

6-4 
5-5 

2. 
n   = 
r   = number of labeled events 
p   = probability of labeled event 
r\   = random number from the uniform distribution on (0, 1) 

3.  For tabular convenience, r, r\ is listed as r + rj. 
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AMCP 706-200 

TABLE 34(A) (Continued) 

n = 11        n = 12       n = 13        n = 14        n = 15       n = 16        n = 17        n = 18        n = 10 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 0 0 
00 OS 00 08 00 07 00 07 00 06 00 06 00 05 00 05 00 05 01 
00 15 00 14 00 13 00 12 00 11 00 10 00 10 00 09 00 09 •2 
00 19 00 17 00 16 00 15 00 14 00 13 00 12 00 12 00 11 •3 
00 21 00 19 00 18 00 17 00 16 00 15 00 14 00 13 00 13 •4 
00 23 00 21 00 19 00 18 00 17 00 10 00 15 00 14 00 14 •5 

00 24 00 22 00 21 00 19 00 18 00 17 00 16 00 15 00 15 •6 
00 25 00 23 00 22 00 20 00 19 00 18 00 17 00 16 00 15 •7 
00 26 00 24 00 23 00 21 00 20 00 19 00 18 00 17 00 16 •8 
00 27 00 25 00 23 00 22 00 21 00 19 00 18 00 17 00 17 •9 
00 28 00 26 00 24 00 22 00 21 00 20 00 19 00 18 00 17 10 

00 32 00 30 00 28 00 26 00 25 00 23 00 22 00 21 00 20 1-2 
00 36 00 33 00 31 00 29 00 27 00 26 00 24 00 23 00 22 1-4 
00 38 00 35 00 33 00 31 00 29 00 27 00 26 00 25 00 23 1-6 
00 40 00 37 00 34 00 32 00 30 00 29 00 27 00 26 00 25 1-8 
01 41 00 38 00 36 00 34 00 32 00 30 00 28 00 27 00 26 20 

01 45 01 41 01 39 00 36 00 34 00 32 00 31 00 29 00 28 2-2 
01 47 01 44 01 41 01 39 01 36 01 34 01 32 00 31 00 29 2-4 
01 49 01 46 01 43 01 40 01 38 01 36 01 34 01 32 01 31 2-6 
02 51 02 47 02 44 02 42 01 39 01 37 01 35 01 34 01 32 2-8 
04 52 03 49 03 45 03 43 03 40 02 38 02 36 02 34 02 33 30 

04 55 04 51 03 48 03 45 03 43 03 40 03 38 02 36 02 35 3;2 
05 57 04 53 04 50 04 47 03 44 03 42 03 40 03 38 03 36 3-4 
06 59 05 55 05 62 04 49 04 46 04 44 03 41 03 39 03 38 3-6 
07 60 06 56 06 53 05 50 05 47 04 45 04 42 04 40 04 39 3-8 
09 61 08 58 07 54 07 51 06 48 06 46 05 43 05 41 05 39 40 

09 64 08 60 08 66 07 53 07 50 06 48 06 45 05 43 05 41 4-2 
10 6G 09 62 08 58 08 55 07 52 07 49 06 47 06 45 06 43 4-4 
11 68 10 63 09 60 09 56 08 53 07 51 07 43 06 46 06 44 4-6 
13 69 12 65 11 61 10 57 09 54 OS 52 08 49 07 47 07 45 4-8 
15 70 14 66 12 62 11 58 10 55 10 53 09 50 ( 08 48 08 46 60 

16 72 14 68 13 64 12 60 11 57 10 54 10 52 09 49 08 47 5-2 
17 74 15 70 14 66 13 62 12 59 11 56 10 53 10 51 09 48 5-4 
18 76 16 71 15 67 14 63 13 60 12 57 11 54 10 52 10 50 5-6 
20 77 18 72 16 68 15 64 14 61 13 58 12 55 11 53 11 50 5-8 
22 78 20 73 18 69 17 65 15 62 14 69 13 56 12 54 12 51 60 

21 75 19 71 17 67 16 64 15 61 14 58 13 55 12 63 6-2 
22 77 20 73 18 69 17 65 16 62 14 59 14 56 13 54 6-4 
23 78 21 74 19 70 18 66 16 63 15 60 14 68 14 55 6-6 

23 75 21 71 19 67 18 64 16 61 15 58 14 56 6-8 
24 76 22 72 21 68 19 65 18 62 17 59 16 57 70 

23 74 21 70 20 67 18 63 17 61 16 58 7-2 
24 75 22 71 21 68 19 65 18 62 17 59 7-4 
25 76 23 72 21 69 20 66 19 63 18 60 7-6 

24 73 23 70 21 67 20 64 18 61 7-8 
26 74 24 

25 
26 
27 

71 

72 
73 
74 

22 

23 
24 
25 
26 
27 

68 

69 
70 
71 
72 
73 

21 

21 
22 
23 
24 
26 

26 
27 
28 

65 

66 
67 
68 
69 
70 

71 
72 
73 

20 

20 
21 
22 
23 
24 

25 
25 
26 
27 
28 

62 

63 
64 
65 
66 
67 

68 
69 
70 
71 
72 

80 

8-2 
8-4 
8-6 
8-8 
90 

9-2 
9-4 
9-8 
9-8 
10-0 

3-18 



AMCP 706-200 

TABLE 3-4(A) (Continued) 

20       n = 21        n = 22        n = 23       n = 24        n = 26        n = 28        n = 30       n = 32 
r  + T) 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 
00 05 00 04 00 04 00 04 00 04 00 04 00 03 00 03 00 03 01 
00 08 00 08 00 08 00 07 00 07 00 07 00 06 00 06 00 05 ■2 

00 11 00 10 00 10 00 09 00 09 00 08 00 08 00 07 00 07 •3 
00 12 00 11 00 11 00 10 00 10 00 09 00 09 00 08 00 08 •4 
00 13 00 12 00 12 00 11 00 11 00 10 00 09 00 09 00 08 •5 

00 14 00 13 00 13 00 12 00 12 00 11 00 10 00 09 00 09 ■6 

00 15 00 14 00 13 00 13 00 12 00 11 00 11 00 10 00 09 •7 
00 15 00 15 00 14 00 13 00 13 00 12 00 11 00 10 00 10 •8 
00 16 00 15 00 14 00 14 00 13 00 12 00 12 00 11 00 10 •9 
00 16 00 16 00 15 00 14 00 14 00 13 00 12 00 11 00 10 10 

00 19 00 18 00 17 00 17 00 16 00 15 00 14 00 13 00 12 12 
00 21 00 20 00 19 00 18 00 18 00 16 00 15 00 14 00 13 1-4 
00 22 00 21 00 20 00 20 00 19 00 18 00 16 00 15 00 14 1-6 
00 24 00 23 00 22 00 21 00 20 00 19 00 17 00 16 00 15 18 
00 24 00 23 00 22 00 22 00 21 00 19 00 18 00 17 00 16 2-0 

00 27 00 25 00 24 00 23 00 22 00 21 00 20 00 18 00 17 2-2 
00 28 00 27 00 26 00 25 00 24 00 22 00 21 00 19 00 18 2-4 
01 29 01 28 01 27 01 26 01 25 00 23 00 22 00 20 00 19 2-6 
01 31 01 29 01 28 01 27 01 26 01 24 01 23 01 21 01 20 2-8 
02 31 02 30 02 29 02 28 02 27 01 25 01 23 01 22 01 20 30 

02 33 02 32 02 31 02 29 02 28 02 26 01 25 01 23 01 22 3-2 
02 35 02 33 02 32 02 31 02 29 02 27 02 26 02 24 01 23 3-4 
03 36 03 34 03 33 02 32 02 31 02 28 02 27 02 25 02 23 3-6 
03 37 03 35 03 34 03 33 03 31 03 29 02 27 02 26 02 24 38 
04 38 04 36 04 35 04 33 04 32 03 30 03 28 03 26 03 25 40 

05 39 05 38 04 36 04 35 04 34 04 31 03 29 03 27 03 26 4-2 
05 41 05 39 05 37 04 36 04 35 04 32 04 30 03 28 03 27 4-4 
06 42 05 40 05 39 05 37 05 36 04 33 04 31 04 29 03 28 4-6 
07 43 06 41 OR 39 06 38 05 36 05 34 05 32 04 30 04 28 4-8 
08 44 07 42 07 40 06 39 06 37 06 35 05 32 05 31 05 29 50 

08 45 08 43 07 42 07 40 07 39 06 36 06 34 05 32 05 30 5-2 
08 46 08 45 08 43 07 41 07 40 06 37 06 35 05 33 05 31 5-4 
09 47 09 46 08 44 08 42 07 41 07 38 06 35 06 33 05 31 5-6 
10 48 09 46 09 45 09 43 08 41 07 39 07 36 06 34 06 32 5-8 
11 49 10 47 10 45 09 44 09 42 08 39 08 37 07 35 07 33 60 

12 52 12 50 11 48 11 46 10 45 09 42 09 39 08 37 07 35 6-5 
15 54 14 52 13 50 13 48 12 47 11 44 10 41 09 38 09 36 7-0 
16 57 15 55 15 53 14 51 13 49 12 46 11 43 10 41 10 38 7-5 
18 59 17 57 17 55 16 53 15 51 14 48 13 45 12 42 11 40 80 
20 62 19 60 18 58 17 56 16 54 15 50 14 47 13 44 12 42 85 

23 64 21 62 20 60 19 57 18 55 17 52 15 49 14 46 13 43 90 
24 67 23 64 22 62 21 60 20 58 18 54 17 51 15 48 14 45 9-5 
27 69 25 66 24 64 23 62 22 60 20 56 18 52 17 49 16 47 100 
28 72 27 69 25 66 24 64 23 62 21 58 19 55 18 51 17 49 10-5 

29 71 28 68 26 66 25 64 23 60 21 56 20 53 18 50 110 

29 71 28 68 27 66 24 62 22 58 21 55 19 52 11-5 
30 70 29 67 26 63 24 60 22 56 21 53 120 

30 70 28 65 25 62 23 58 22 55 12-5 
33 71 30 

31 

33 

67 
69 

70 

27 
29 

30 
32 
34 

63 
65 

66 
68 
70 

25 
26 

28 
29 
31 
34 

60 
61 

63 
05 
66 
69 

23 
25 

26 
27 
29 
32 
35 

50 
58 

59 
61 
63 
65 
68 

130 
13-5 

140 
14-5 
15 
16 
17 
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TABLE 3-4(A) (Continued) 

n = 34       n = 36       n = 38       n = 40       n = 42       n = 44       n = 46       n «= 48       n = 50 

00 00 
r  + V 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 
00 05 00 05 00 05 00 04 00 04 00 04 00 04 00 04 00 03 0-2 
00 07 00 07 00 06 00 06 00 06 00 06 00 05 00 05 00 05 •4 
00 08 00 08 00 08 00 07 00 07 00 07 00 06 00 06 00 06 •6 
00 09 00 09 00 08 00 08 00 08 00 07 00 07 00 07 00 06 •8 
00 10 00 09 00 09 00 08 00 08 00 08 00 07 00 07 00 07 10 

00 12 00 11 00 10 00 10 00 09 00 09 00 09 00 08 00 08 1-2 
00 13 00 12 00 11 00 11 00 10 00 10 00 10 00 09 00 09 1-4 
00 14 00 13 00 12 00 12 00 11 00 11 00 10 00 10 00 09 1-6 
00 14 00 14 00 13 00 12 00 12 00 11 00 11 00 10 00 10 1-8 
00 15 00 14 00 13 00 13 00 12 00 12 00 11 00 11 00 10 20 

00 18 00 17 00 16 00 15 00 15 00 14 00 13 00 13 00 12 2-5 
01 19 01 18 01 17 01 17 01 16 01 15 01 15 01 14 01 13 30 
01 22 01 21 01 20 01 19 01 18 01 17 01 16 01 16 01 15 3-5 
03 23 02 22 02 21 02 20 02 19 02 18 02 18 02 17 02 16 40 
03 26 03 24 03 23 03 22 02 21 02 20 02 19 02 19 02 18 4-5 

04 27 04 26 04 25 04 23 03 22 03 21 03 21 03 20 03 19 60 
05 29 05 28 04 27 04 25 04 24 04 23 04 22 03 21 03 21 6-5 
06 31 06 29 05 28 05 27 05 25 05 24 04 23 04 22 04 22 60 
07 33 07 31 06 30 06 28 06 27 05 26 05 25 05 24 05 23 6-5 
08 34 08 33 07 31 07 30 07 28 06 27 06 26 06 25 05 24 70 

09 36 09 35 08 33 08 31 07 30 07 29 07 28 06 27 06 26 7-5 
10 38 10 36 09 34 09 33 08 31 08 30 08 29 07 28 07 27 8-0 
11 40 10 38 10 36 09 34 09 33 08 31 08 30 08 29 07 28 8-5 
12 41 12 39 11 37 10 36 10 34 09 33 09 31 09 30 08 29 90 
13 43 13 41 12 39 11 37 11 36 10 34 10 33 09 31 09 30 9-5 

15 44 14 42 13 40 12 38 12 37 11 35 11 34 10 33 10 31 100 
16 40 15 44 14 42 13 40 12 38 12 37 11 35 11 34 10 33 10-5 
17 47 16 45 15 43 14 41 14 39 13 38 12 36 12 35 11 34 110 
18 49 17 47 16 45 15 43 14 41 14 39 13 38 12 36 12 35 11-5 
19 61 18 48 17 46 16 44 15 42 15 40 14 39 13 37 13 36 120 

20 52 19 60 18 47 17 45 16 43 15 42 15 40 14 39 13 37 12-5 
22 54 21 51 19 49 18 47 17 45 16 43 16 41 15 40 14 38 130 
23 55 22 53 20 50 19 48 18 46 17 44 16 42 16 41 15 39 13-5 
24 57 23 54 22 51 20 49 19 47 18 45 18 43 17 42 16 40 140 
25 58 24 55 22 53 21 61 20 48 19 47 18 45 17 43 17 42 14-5 

27 69 25 57 24 54 22 52 21 50 20 48 19 46 18 44 18 42 15-0 
28 61 26 58 25 56 23 53 22 61 21 49 20 47 19 45 18 44 15-5 
30 62 28 59 26 57 25 54 23 62 22 50 21 48 20 46 19 45 160 
31 64 29 61 27 68 26 56 24 63 23 51 22 49 21 47 20 46 16-5 
32 65 30 62 28 69 27 57 25 64 24 52 23 50 22 48 21 47 170 

33 67 31 64 29 61 28 58 26 56 25 54 24 62 23 50 22 48 17-5 
35 68 33 65 31 62 29 69 28 57 26 65 25 52 24 51 23 49 180 

34 66 32 63 30 61 28 58 27 56 26 54 25 52 23 50 18-5 
35 67 33 64 31 62 30 59. 28 57 27 55 26 53 24 61 190 

34 66 32 63 31 60 29 58 28 56 26 54 25 52 19-5 

36 67 34 64 32 61 30 59 29 57 27 55 26 53 200 
35 65 33 63 31 60 30 58 28 56 27 54 20-5 
36 66 34 64 32 61 31 59 29 57 28 55 21-0 

35 65 33 62 32 GO 30 58 29 56 21-5 
36 66 34 

35 
37 

63 

65 
60 

33 

34 
35 
37 

61 

62 
63 
65 

31 

32 
33 
35 
37 

59 

60 
61 
63 
65 

30 

31 
32 
34 
35 
37 

57 

58 
59 
61 
63 
65 

22-0 

22-5 
23 
24 
25 
26 
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TABLE 34(B) 

n = 2 

NEYMAN-SHORTEST UNBIASED 99%s-CONFIDENCE INTERVALS FOR p 
(ADAPTED FROM Ref. 8) 

n= 3 n = 4 n = 5 n = 6 n = 8 n = 9 n = 10 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
r +  7? 

0 
00 90 00 68 00 54 00 44 00 37 00 33 00 29 00 26 00 24 01 
00 95 00 78 00 63 00 53 00 45 00 40 00 36 00 32 00 30 •2 
00 97 00 82 00 68 00 57 00 49 00 44 00 39 00 36 00 33 •3 
00 98 00 84 00 71 00 60 00 52 00 46 00 42 00 38 00 35 ■4 

00 98 00 86 00 73 00 62 00 54 00 48 00 43 00 39 00 36 ■5 

00 98 00 87 00 74 00 64 00 56 00 49 00 45 00 41 00 38 •6 
00 99 00 88 00 76 00 65 00 57 00 51 00 46 00 42 00 39 ■7 

00 99 00 89 00 77 00 67 00 68 00 52 00 47 00 43 00 39 •8 
00 99 00 89 00 78 00 68 00 59 00 53 00 48 00 44 00 40 •9 
00 99 00 90 00 78 00 68 00 60 00 54 00 49 00 44 00 41 10 

00 10 00 96 00 84 00 74 00 65 00 58 00 52 00 48 00 44 11 
00 10 00 98 00 88 00 77 00 68 00 61 00 55 00 51 00 47 1-2 
00 10 00 98 00 90 00 79 00 71 00 63 00 57 00 52 00 48 1-3 
00 10 00 99 00 91 00 81 00 72 00 65 00 59 00 54 00 60 1-4 
00 10 00 99 00 92 00 82 00 74 00 66 00 60 00 55 00 51 15 

00 99 00 92 00 83 00 75 00 67 00 61 00 56 00 52 1-6 
00 99 00 93 00 84 00 76 00 68 00 62 00 57 00 63 1-7 
00 99 00 93 00 85 00 77 00 69 00 63 00 58 00 54 1-8 
00 99 00 94 00 85 00 77 00 70 00 64 00 58 00 54 1-9 
01 99 00 94 00 86 00 78 00 71 00 64 00 59 00 65 2-0 

00 97 00 89 00 81 00 74 00 67 00 62 00 57 21 
00 98 00 91 00 83 00 76 00 69 00 64 00 59 2-2 
00 99 00 93 00 85 00 77 00 71 00 65 00 60 2-3 
01 99 00 93 00 86 00 79 00 72 00 66 00 61 2-4 
01 99 01 94 00 87 00 80 00 73 00 67 00 62 2-5 

01 95 00 88 00 80 00 74 00 68 00 63 28 
01 95 01 88 01 81 00 75 00 69 00 64 2-7 
01 95 01 89 01 82 01 75 01 70 01 65 2-8 
02 96 02 89 01 82 01 76 01 70 01 65 2-9 
04 96 03 89 03 83 02 76 02 71 02 66 30 

03 92 03 85 02 79 02 73 02 68 31 
04 93 03 87 03 80 02 74 02 69 3-2 
04 94 03 83 03 81 02 76 02 70 3-3 
04 95 03 89 03 82 03 77 02 71 3-4 
05 95 04 

04 
05 
05 
07 
08 

89 

90 
90 
91 
91 
92 

03 

04 
04 
05 
06 
07 

07 
08 
08 
08 
09 

83 

84 
84 
85 
85 
86 

88 
89 
90 
91 
91 

03 

03 
03 
04 
05 
06 

06 
07 
07 
07 
08 

08 
09 
10 
11 
12 

77 

78 
79 
79 
80 
80 

82 
83 
84 
85 
86 

86 
87 
87 
88 
88 

02 

03 
03 
04 
04 
05 

06 
06 
06 
06 
07 

07 
08 
08 
09 
11 

11 

72 

73 
74 
74 
75 
75 

77 
78 
79 
80 
81 

81 
82 
82 
83 
83 

84 

3-5 

3-6 
3-7 
3-8 
3-9 
40 

4-1 
4-2 
4-3 
4-4 
4-5 

4-6 
4-7 
4-8 
4-9 
50 

51 
airs of figures. are lower and upper s -confidence limits for P. 11 85 5-2 

to 2 decimal places. 
11 
12 

86 
87 

5-3 
5-4 

ion 12 88 5-5 

Notes: 
1. The 

give 
2. Notation 

n   = sample size (in place of N in the text) 
r   = number of labeled events 
p   = probability of labeled event 
T?   = random number from the uniform distribution on (0, 1) 

3. For tabular convenience, r, r\ is listed as r + TJ. 
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n = 11 

TABLE 34(B) (Continued) 

n = 12 13 14 15 n = 16 n = 17 18 19 

00 00 00 00 00 00 00 00 00 00 00" 00. 00 00 00 00 00 00 
r  + n 
0 

00 22 00 20 00 19 00 IS 00 17 00 16 00 15 00 14 00 13 0-1 
00 27 00 25 00 23 00 22 00 21 00 19 00 18 00 17 00 17 •2 
00 30 00 28 00 26 00 24 00 23 00 22 00 20 00 19 00 18 •3 
00 32 00 30 00 28 00 20 00 24 00 23 00 22 00 21 00 20 •4 
00 34 00 31 00 29 00 27 00 26 00 24 00 23 00 22 00 21 •5 

00 35 00 32 00 30 00 28 00 27 00 25 00 24 00 23 00 22 ■6 
00 36 00 33 00 31 00 29 00 27 00 26 00 25 00 23 00 22 •7 
00 37 00 34 00 32 00 30 00 28 00 27 00 25 00 24 00 23 •8 
00 37 00 35 00 32 00 31 00 29 00 27 00 26 00 25 00 23 •9 
00 38 00 35 00 33 00 31 00 29 00 28 00 26 00 25 00 24 1-0 

00 43 00 40 00 38 00 35 00 33 00 32 00 30 00 29 00 27 1-2 
00 46 00 43 00 41 00 38 00 36 00 34 00 32 00 31 00 29 1-4 
00 48 00 45 00 42 00 40 00 38 00 36 00 34 00 32 00 31 1-6 
00 50 00 47 00 44 00 4t 00 39 00 37 00 35 00 33 00 32 1-8 
00 51 00 48 00 45 00 42 00 40 00 38 00 30 00 34 00 33 20 

00 55 00 61 00 48 00 46 00 43 00 41 00 39 00 37 00 35 2-2 
00 57 00 54 00 51 00 48 00 45 00 43 00 41 00 39 00 37 2-4 
00 59 00 55 00 52 00 49 00 47 00 44 00 42 00 40 00 38 2-6 
00 60 00 57 00 53 00 50 00 48 00 45 00 43 00 41 00 39 2-8 
02 61 01 58 01 54 01 51 01 49 01 46 01 44 01 42 01 40 30 

02 64 02 61 01 57 01 54 01 51 01 49 01 46 01 44 01 42 3-2 
02 67 02 63 02 59 02 56 01 53 01 50 01 48 01 46 01 44 3-4 
02 68 02 64 02 61 02 57 02 54 02 52 01 49 01 47 01 45 3-6 
03 69 03 65 03 62 02 58 02 65 02 53 02 50 02 48 02 46 3-8 
05 70 04 66 04 63 04 59 03 56 03 54 03 51 03 49 03 47 40 

05 73 05 69 04 65 04 62 04 59 03 56 03 53 03 51 03 49 4-2 
06 75 05 71 05 67 04 63 04 60 04 57 03 55 03 52 03 50 4-4 
06 76 06 72 05 68 05 65 04 61 04 59 04 50 04 53 03 51 4-6 
07 77 07 73 06 69 06 66 05 62 05 59 04 57 04 54 04 52 4-8 
09 78 08 74 08 70 07 66 06 63 06 60 06 58 05 55 05 53 60 

10 81 09 76 08 72 07 68 07 65 06 62 06 59 05 57 05 55 5-2 
11 82 09 78 09 74 08 70 07 67 07 64 06 61 06 58 06 56 5-4 
11 83 10 79 09 75 09 71 08 68 07 65 07 62 06 59 06 57 5-6 
13 84 11 80 10 76 10 72 09 69 08 66 08 63 07 60 07 5S 5'8 
15 85 13 81 12 77 11 73 10 69 09 66 09 63 OS 61 08 58 60 

14 83 13 79 12 75 11 71 10 68 09 65 09 63 08 60 6-2 
15 84 13 80 12 76 11 73 10 69 10 66 09 64 08 61 6-4 
16 88 14 81 13 77 12 74 11 70 10 67 10 65 09 62 6-6 

16 82 14 78 13 74 12 71 11 68 10 65 10 03 6-8 
17 83 16 79 15 75 13 72 13 69 12 00 11 64 7-0 

16 81 15 77 14 74 13 71 12 08 11 65 7-2 
17 82 16 78 15 75 14 72 13 69 12 66 7-4 
18 83 17 79 15 76 14 73 13 70 12 67 7-6 

18 80 16 77 15 73 14 71 13 68 7-8 
19 SI 18 

19 
19 
20 

77 

79 
80 
81 

17 

17 
18 
19 
20 
21 

74 

76 
77 
7S 
78 
79 

16 

16 
17 
17 
18 
20 

20 
21 
22 

71 

73 
74 
75 
75 
76 

77 
78 
79 

15 

15 
16 
10 
17 
18 

19 
20 
20 
21 
23 

68 

70 
71 
72 
73 
73 

74 
75 
76 
77 
77 

80 

8-2 
8-4 
8-6 
8-8 
90 

9-2 
9-4 
9-6 
9-8 

10-0 
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TABLE 3-4(8) (Continued) 

n = 20       n = 21        n = 22        n = 23        n = 24       n «= 26        n = 28        n = 30        n = 32 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
r + n 
0 

00 13 00 12 00 12 00 11 00 11 00 10 00 09 00 09 00 08 01 
00 16 00 15 00 14 00 14 00 13 00 12 00 12 00 11 00 10 •2 
00 18 00 17 00 16 00 16 00 15 00 14 00 13 00 12 00 11 •3 
00 19 00 18 00 17 00 17 00 16 00 15 00 14 00 13 00 12 •4 
00 20 00 19 00 18 00 17 00 17 00 16 00 15 00 14 00 13 •5 

00 21 00 20 00 19 00 18 00 17 00 16 00 15 00 14 00 13 ■6 
00 21 00 20 00 20 00 19 00 18 00 17 00 16 00 15 00 14 •7 
00 22 00 21 00 20 00 19 00 19 00 17 00 16 00 15 00 14 •8 
00 22 00 21 00 21 00 20 00 19 00 18 00 16 00 15 00 15 ■9 
00 23 00 22 00 21 00 20 00 19 00 18 00 17 00 16 00 15 10 

00 26 00 25 00 24 00 23 00 22 00 21 00 19 00 18 00 17 1-2 
00 28 00 27 00 26 00 25 00 24 00 22 00 21 00 20 00 18 1-4 
00 29 00 28 00 27 00 26 00 25 00 23 00 22 00 21 00 19 1-6 
00 31 00 29 00 28 00 27 00 26 00 24 00 23 00 21 00 20 1-8 
00 31 00 30 00 29 00 28 00 27 00 25 00 23 00 22 00 21 20 

00 34 00 32 00 31 00 30 00 29 00 27 00 25 00 24 00 22 2-2 
00 36 00 34 00 33 00 32 00 30 00 28 00 27 00 25 00 24 2-4 
00 37 00 35 00 34 00 33 00 31 00 29 00 27 00 26 00 24 2-6 
00 38 00 36 00 35 00 34 00 32 00 30 00 28 00 27 00 25 2-8 
01 39 01 37 01 36 01 34 01 33 01 31 01 29 01 27 00 26 30 

01 41 01 39 01 37 01 36 01 35 01 32 01 30 01 29 01 27 3-2 
01 42 01 40 01 39 01 37 01 36 01 34 01 32 01 30 01 28 3-4 
01 43 01 42 01 40 01 38 01 37 01 35 01 32 01 31 01 29 3-6 
02 44 02 42 01 41 01 39 01 38 01 35 01 33 01 31 01 30 3-8 
02 45 02 43 02 42 02 40 02 39 02 36 02 34 02 32 01 30 40 

03 47 02 45 02 43 02 42 02 40 02 38 02 35 02 33 02 31 4-2 
03 48 03 46 03 44 02 43 02 41 02 39 02 36 02 34 02 32 4-4 
03 49 03 47 03 46 03 44 03 42 02 40 02 37 02 35 02 33 4-6 
04 51 04 48 03 46 03 45 03 43 03 40 03 38 02 36 02 34 4-8 
05 61 04 49 04 47 04 45 04 44 03 41 03 38 03 36 03 34 6-0 

05 52 05 50 04 49 04 47 04 45 04 42 03 40 03 37 03 35 6-2 
05 64 05 52 05 50 04 48 04 46 04 43 04 41 03 38 03 36 6-4 
06 65 05 53 05 51 05 49 05 47 04 44 04 41 04 39 03 37 5-6 
06 55 06 53 06 51 05 50 05 48 05 45 04 42 04 40 04 38 5-8 
07 56 07 54 07 52 06 50 06 49 05 45 05 43 05 40 04 38 60 

08 59 08 57 07 55 07 63 07 51 06 48 06 45 05 43 05 40 6-5 
10 Gl 10 59 09 57 09 55 08 53 08 50 07 47 07 44 06 42 70 
11 64 11 62 10 60 10 58 09 56 08 52 08 49 07 47 07 44 7-5 
14 66 13 64 12 61 12 59 11 57 10 54 09 51 09 48 08 45 80 
15 69 14 66 13 64 13 62 12 60 11 56 10 53 09 50 09 48 8-5 

17 70 16 68 15 66 15 64 14 62 13 58 12 55 11 52 10 49 90 
19 73 18 71 17 68 16 66 15 64 14 60 13 57 12 54 11 61 9-5 
21 75 20 72 19 70 18 63 17 66 16 62 14 58 13 55 12 52 100 
23 77 21 75 20 72 19 70 18 68 17 64 15 00 14 57 13 54 10-5 

24 76 22 74 21 72 20 69 18 65 17 62 16 58 15 66 110 

24 76 23 74 21 72 19 68 18 64 17 60 15 57 11-5 
25 75 24 73 21 69 20 60 18 62 17 59 120 

25 75 23 71 21 67 19 64 18 61 12-5 
27 76 25 

26 

28 

72 
74 

75 

22 
24 

25 
27 
28 

68 
70 

72 
73 
75 

21 
22 

23 
24 
26 
29 

65 
67 

68 
70 
71 
74 

19 
20 

22 
23 
24 
27 
30 

62 
64 

65 
66 
68 
70 
73 

130 
13-5 

140 
14-5 
15 
16 
17 
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n = 34 

TABLE 3-4IB) (Continued) 

36 n = 38 40 42 n = 44 n = 46 48 n = 50 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
r  + rj 

0 
00 10 00 09 00 09 00 08 00 08 00 07 00 07 00 07 00 07 •2 
00 12 00 11 00 10 00 10 00 09 00 09 00 09 00 08 00 08 •4 
00 13 00 12 00 11 00 11 00 10 00 10 00 09 00 09 00 09 ■6 
00 13 00 13 00 12 00 12 00 11 00 11 00 10 00 10 00 09 •8 
00 14 00 13 00 13 00 12 00 12 00 11 00 11 00 10 00 10 10 

00 16 00 15 00 15 00 14 00 13 00 13 00 12 00 12 00 11 1-2 
00 17 00 16 00 16 00 15 00 14 00 14 00 13 00 13 00 12 1-4 
00 18 00 17 00 17 00 16 00 15 00 14 00 14 00 13 00 13 1-6 
00 19 00 18 00 17 00 16 00 16 00 15 00 14 00 14 00 13 1-8 
00 20 00 19 00 18 00 17 00 16 00 15 00 15 00 14 00 14 2-0 

00 23 00 22 00 20 00 20 00 19 00 18 00 17 00 16 00 16 2-5 
00 24 00 23 00 22 00 21 00 20 00 19 00 18 00 18 00 17 30 
01 27 01 26 01 24 01 23 01 22 00 21 00 20 00 20 00 19 3-5 
01 29 01 27 01 26 01 25 01 24 01 23 01 22 01 21 01 20 40 
02 31 02 29 01 28 01 27 01 26 01 25 01 24 01 23 01 22 4-5 

03 32 02 31 02 29 02 28 02 27 02 26 02 25 02 24 02 23 50 
03 35 03 33 03 32 03 30 02 29 02 28 02 27 02 26 02 25 5-5 
04 36 04 34 04 33 03 31 03 30 03 29 03 28 03 27 03 26 60 
05 38 04 37 04 35 04 33 04 32 03 31 03 29 03 28 03 27 6-5 
06 40 05 38 05 36 05 35 05 33 04 32 04 30 04 29 04 28 7-0 

06 42 Ob 40 06 38 05 36 05 35 05 33 05 32 04 31 04 30 7-5 
07 43 07 41 07 39 06 38 06 36 06 35 05 33 05 32 05 31 80 
08 45 08 43 07 41 07 39 07 38 06 36 06 35 06 33 05 32 8-5 
09 47 09 44 08 42 08 40 07 39 07 37 07 36 06 34 06 33 90 
10 48 10 46 09 44 08 42 08 40 08 39 07 37 07 36 07 35 9-5 

11 50 11 47 10 45 10 43 09 42 09 40 08 38 08 37 08 36 100 
12 52 11 49 11 47 10 45 10 43 09 41 09 40 08 38 08 37 10-5 
14 53 13 50 12 48 11 46 11 44 10 42 10 41 09 39 09 38 110 
14 55 14 52 13 50 12 48 11 46 11 44 10 42 10 41 09 39 115 
16 56 15 53 14 51 13 49 12 47 12 45 11 43 11 42 10 40 120 

17 58 15 55 15 53 14 50 13 48 12 46 12 45 11 43 11 42 12-5 
IS 59 17 56 16 54 15 51 14 49 13 47 13 46 12 44 12 43 130 
19 61 18 58 17 55 16 53 15 51 14 49 13 47 13 45 12 44 13-5 
20 62 19 59 18 56 17 54 16 52 15 50 14 48 14 46 13 45 140 
21 63 20 61 19 58 18 56 17 53 16 51 15 49 14 48 14 46 14-5 

23 64 21 62 20 59 19 57 18 54 17 52 16 50 15 49 15 47 150 
24 66 22 63 21 61 20 58 19 56 18 54 17 52 16 50 15 48 15-5 
25 67 23 64 22 62 21 59 20 57 19 55 18 53 17 51 16 49 160 
26 69 24 66 23 63 22 61 20 68 19 56 18 54 18 52 17 50 16-5 

28 70 26 67 24 64 23 61 22 59 20 57 19 55 19 53 18 51 170 

29 71 27 68 25 66 24 63 22 60 21 58 20 56 19 54 18 52 17-5 
30 72 28 69 26 C7 25 64 24 61 22 59 21 57 20 55 19 53 18-0 

29 71 27 68 26 65 24 63 23 60 22 58 21 56 20 54 18-5 
31 72 29 69 27 66 26 64 24 61 23 59 22 57 21 55 190 

30 70 28 68 26 65 25 63 24 60 23 58 22 56 19-5 

31 71 29 68 28 66 26 64 25 61 24 59 23 57 20-0 
30 70 28 67 27 65 26 62 24 60 23 58 20-5 
32 71 30 68 28 66 27 63 26 61 24 59 210 

31 69 29 67 28 65 26 62 25 60 21-5 
32 70 30 

31 
32 

68 

69 
70 

29 

29 
31 
33 

65 

67 
67 
69 

27 

28 
29 
31 
33 

63 

64 
65 
67 
69 

26 

27 
28 
30 
31 
33 

61 

62 
63 
65 
67 
69 

220 

22-5 
23 
24 
25 
28 
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Figure 3-2. Special Case for No Failures in N Trials and C = RL 

All the .s-confidence intervals are discouraging- 
ly broad. Statistics shows us how little we 
know from the experiment. 

UN is too large for Table 3-2, use Fig. 3-1 
or use the Poisson approximation. Ref. 1 can 
be used to find the inside and outside limits 
by setting 7} = 1 and 0 and solving for the 
appropriate value of p. 

3-7.2 EXAMPLE NO. 2 

Thirty tests were run, there were no 
failures. Find the lower 1-sided s-confidence 
limit C on the s-reliability R such that C= R. 

R = 30/30== 1. 

Enter Fig. 3-2 with N = 30; then 
1 — C= 1 — R = 0.08= 1 -0.92; 
Conf  {i?>0.92}   >92%. 
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CHAPTER 4 

POISSON DISTRIBUTION 

AMCP 706-200 

4-0 LIST OF SYMBOLS PrD = Probability distribution 

C = 5-Confidence R = 5-Reliability 

Cdf = Cumulative distribution func- r = random variable, discrete 
tion 

s- = denotes   statistical   definition 
C, L, U = subscripts that implyas-confi- 

dence level; C is general, L is Sf = Survivor function 
lower, U is upper 

StDv {   } = standard deviation 
CMt\   } = /th central moment 

Var{ } = variance 
Conf{  } = s-Confidence level 

M = parameter 
csqfc = Sf for chi-square distribution 

CV{   } = coefficient       of      variation: 
StDv |    \IE{   } 

E {   ) = 5-Expected value 

gaufc = Sf for Gaussian distribution 

Mi |    j = /th moment about the origin 

NCM( {   }     = normalized   /th   central   mo- 
ment;    CMi {   } /[StDvl     }]' 

pdf = probability density function 

pmf = probability mass function 

poi = base name for Poisson distri- 
bution 

poif = Cdf for Poisson distribution 

poifc = Sf for Poisson distribution 

Pr { } = Probability 

I ■;•}.(";") = trie fixed parameters are listed 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

= the complement, e.g., <p = 1 
0 where </> is any probability 

4-1   INTRODUCTION 

The Poisson distribution relates the actual 
number of events in a given interval to the 
true average number of events in that interval, 
when the process is Poisson. (Poisson was 
French—the name is pronounced pwah- 
ssohn.) It is often a good approximation to 
the binomial distribution. 

The base name poi is given to the Poisson 
distribution (for Poisson). The suffix/implies 
the Cdf, and the suffix fc implies the Sf. The 
Cdf and Sf are not complementary because 
the random variable is discrete. 

4-1 
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4-2 FORMULAS 

H = Poisson parameter (true average num- 
ber of events in the interval) n > 0 

r = random variable, r - 0, 1, 2, ... 
(actual number of events in the 
interval) 

pmf{r;n) = exp( - n)pr/r\ (4-1) 

i= 0 

(4-2) 

Sf{r,n) = poifcir; M) = 2-/ exp( - n)p'/i\ 
i = r 

(4-3; 

Eq. 4-5 relates the Poisson and chi-square 
distributions. 

poifir; n) = csqfc [ 2p; 2{r + 1)] (4-5a) 

poifc(r; p) = csq/Wp, 2r) (4-5b) 

For reasonably large v (say v > 5), Eq. 4-6 is 
sufficiently accurate. 

*."['-te)**(*)"? <«> 
Cd/{/-; M} = po/A/-; M) = Z) exp( -M)M'//! where 

«?/c(Xp>0 \v)-Q 

gaufc(zQ) = Ö 

E{r,n) =p 

StDfj{r, n) = pin 

CV{r,fi}=p-1/2 

CM3{r,p}=n 

NCM3{r,ß} =M"
1/2 

Table 4-1 shows a few examples of the 
Poisson pmf. If a Poisson process has a rate X 
(events per unit measure of T), then 

P = \T 

4-3 TABLES AND CURVES 

(4-4) 

The pmf is easily calculated and so is rarely 
tabulated; Ref. 1 (Table 39 and Sec. 21) gives 
some tables of individual terms. The Cdf is 
available in tables such as Ref. 1 (Table 7 and 
Sec. 3), Ref. 2 (Table V and p. 24), Ref. 3 
(Table 26.7), Ref. 4, and almost any 
statistics/probability/quality control text- 
book. 

Figure 4-1 is a graph of the poif from Eq. 4-2. 

4-4 PARAMETER ESTIMATION 

The estimator 

ß= r (4-7) 

is unbiased and maximum likelihood. If r = 0, 
it is esthetically displeasing, although still 
quite true. Very often (when r = 0) a 
^-confidence limit is used in place of jx usually 
corresponding to about 50% s-confidence 
level. If M = Xr, and X is to be estimated, 
merely divide all estimates and .j-confidence 
limits for n by T. 

5-Confidence statements are more difficult 
for discrete random variables than for 
continuous random variables. Chapter 12 
discusses the matter thoroughly. The usual 
5-confidence intervals for ju are of the forms 

Conf{M< nL) < CL 

Conf{/i< nv) > Cv 

(4-8a) 

(4-8b) 
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TABLE 4-1 

p = 0.01 

POISSON DISTRIBUTION, EXAMPLES 

pmf  1 r, u | 

M = 01 /J = 0.5 M= 1 ju = 2 M = 5 M=10 

0 0.99 0.90 0.61 0.37 0.14 0.0067 0.45 X 10" 

1 .99 X 10~2 .090 .30 .37 .27 .034 .0045 
2 .50 X 10-4 .0045 .076 .18 .27 .084 .0023 
3 .17 X 10"* .00015 .013 .061 .18 .14 .0076 
4 .041 X 10"* .38 X 10"5 .0016 .015 .090 .18 .019 
5 • .75 X 10"7 .00016 .0031 .036 .18 .038 
6 • .13X 10'8 .13X 10"* .00051 .012 .15 .063 
7 • • .94 X 10-6 .73 X 10~4 .0034 .10 .090 
8 • .59 X 10-7 .91 X 10~5 .00086 .065 .11 
9 • .33 X 10~8 1.0 X 10"6 .00019 .036 .13 

10 .16 X 10'9 1.0X 10'7 .38 X 10~4 .018 .13 
11 • .92X10'8 .69 X 10~5 .0082 .11 
12 • .77 X 10-9 .12 X 10~5 .0034 .095 
13 • • .18 X 10-6 .0013 .073 
14 • .25 X 10'7 .00047 .052 
15 ■ .34 X 10"8 .00016 .035 
16 .42 X 10*9 .49 X 10~4 .022 
17 • .14 X 10~4 .013 
18 • .40 X 10"5 .0071 
19 • .11 X 10"5 .0037 
20 .26 X 10"* .0019 

25 .13X10"9      .29X10"4 

30 .17 X 10-6 

35 .44 X 10" 

E\np\          0.01 0.1 0.5 1.0 2.0 5.0 I0.0 
StDv{r;/^}     0.10 0.32 0.71 1.0 1.4 2.2 3.2 
CV{r;ji}      10.0 3.2 1.4 1.0 .71 .45 .32 
CM3{r,ß]      0.01 0.1 0.5 1.0 2.0 5.0 10.0 
NCM3{ r;p) 10.0 3.2 1.4 1.0 .71 .45 .32 
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Conf {pL <n<Hu}  >CV-CL (4-8c) Conf {pi < P < Hu) <CV-CL (4-9c) 

where pL and pv are defined by 

Cv = 1 - po//(r; ju^) = csqf(2pv ;2r + 2) 

CL = poifc(r; pL) = csqf(2pL ; 2/0, r ¥= 0 

MjL = 0, r = 0. 

In this form, Q is usually small (say 5%) and 
C^ is usually large (say 95%). Notation for 
s-confidence statements is not at all standard; 
so particular attention must be paid to the 
example forms. Table 6-1 and Fig. 4-1 are 
useful for this type of s-confidence statement. 

Chapter 12 shows that s-confidence state- 
ments for p can also be of the forms 

Conf{M< p[) > CL (4-9a) 

Conf{/*< Py) < Cv 

Procedure 

(4-9b) 

where p'L and py are defined by 

Cu = poifc(r; pv) = csqf(2pv ;2r),r*0. 

PÜ = 0,r = 0. 

CL = 1 - poif{r; nl) = csqf(2nl ;2r+2) 

In this form, as in Eq. 4-8, CL is usually small 
(say 5%), and Cv is usually large (say 95%). 
HI and p'v will be inside the interval (pL,pv) 
(for r =£ 0). Table 6-1 and Fig. 4-1 are useful 
for this type of s-confidence statement also. 

Example. In a 1000-hr life test, there are 3 
failures. Find the 5% and 95% 1-sided 
s-confidence limits on the true mean (for the 
1000 hr) p; also make the associated 2-sided 
s-confidence statement. Find the correspond- 
ing limits on the failure rate X(X = pj 1000-hr). 

Example 

1.  Find Py, pL from Eq. 4-8 and Table 6-1.        1. 

2.  Find pv, p'L from Eq. 4-9 and Table 6-1. 

cs?/(15.5;8) = 0.95 
Pv = 7,75 
cs?/(1.64;6) = 0.05 
PL = 0.82 

2. cs<7/(12.6;6) = 0.95 
Pv = 63 
csqf (2.73 ;8) = 0.05 
p; = 1.37 

3. Make the s-confidence statements from 
Steps 1 and 2. 

4. Make the corresponding s-confidence 
statements about X. 

3. Conf 
Conf 
Conf 
Conf 
Conf 

4. 

p < 0.82    < 5% 
M<7.75 j >95% 
0.82 <M< 7.75 } >907o 
p< 1.37} >5% 
p < 6.3 } < 95% 

Conf j 1.37 </i<6.3 } < 90% 

Conf 
Conf 
Conf 
Conf 
Conf 
Conf 

X< 0.82/1000-hr ( < 5% 
X< 7.8/1000-hr} <95% 
0.82/1000-hr < X < 7.8/1000-hr } > 90% 
X< 1.37/1000-hr} > 5% 
X< 6.3/1000-hr} < 95% 
1.37/1000-hr « X < 6.3/1000-hr } < 90% 
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AMCP 706-200 

The statements about X and ju are discour- 
agingly wide. This is due to the srnall number 
of failures. 

4-5 RANDOMIZED       EXACT 
DENCEINTERVALS 

s-CONFI- 

Traditionally, the ^-confidence statement 
(£q. 4-8)-worst case—is made to be on the 
safe side. Instead of always choosing this 
worst case, one can get exact s-confidence 
limits by randomly choosing a value between 
pL and ß[, or between ßy and ßy. There is 
nothing to lose and everything to gain by this 
procedure because it means not always 
choosing the worst possible case. 

The equations to give the randomized 
limits are 

_ poifdr; ß*)-CL 

exp(-ju2)(M*y \r\ 

poifcjr; ßj)-CL 

poifc(r; ßf) - poifc(r + 1; ßf) 

_       CL-poif{r-\;ßt) 

poifir; ßl) -poif{r -\\ßt) 

(unless r = 0, and 77 < Q,; 

then use ßf = 0)    (4-10a) 

= poif{r\Hu)-Üu 
exp(-ß*u)(ß*y/n 

= CJJ -poifc(r+ \\ßfj) 
poifdr; ßy) -poifc(r + 1; ßfi) 

=        po'f(nßt/)-Cu 

poif(r\ ß%) -poif(r -l;ß&) 

(unless r - 0, and 7? > CUt 

then use ßft = 0)   (4-10b) 

where 77 is a random number from the 
uniform distribution 0 < 17 < 1. When 77 = 0, 
ß* = ßL and ßy = ßy. If 77 = 1 (consider the 
least upper bound of 77), ß*L = ß[ and ß:f/ = ßu. 

If special tables are not available for ßf and 
ßv use Eqs. 3-8 and 3-9 with Table 6-1 to 
find ßy, ßL and ßy, ß'L . Then use Eq. 3-10 to 
find ßf, ßv by an iterative process. 

A handy random number generator is a 
coin, flipped several times. Decide whether 
heads is to be 0 or 1; tails is the reverse. Then 
multiply the result of the first flip by 0.5, the 
second flip by 0.25, the third flip by 0.125, 
etc. (the numbers are 2"fl'P), as fine as 
desired. Then add the numbers. Usually 5 or 6 
flips give a sufficiently continuous random 
variable. (For example, heads is 0, tails is 1, 
the sequence is H, T, H, H, T, H. Add 0.25 + 
0.03125 = 0.28125; truncate to 0.281 for 
convenience.) 

Example. Use the data and solution from 
the example in par. 4-4. Find the randomized 
exact 5% and 95% 5-confidence limits. 
Suppose 77 = 0.281 (the random number in 
the paragraph immediately above). Since r = 3 
is not very large, direct calculation of 
poif(r;ß) will be used. (This is reasonable on 
the electronic calculators with engineering 
functions. An HP-45 was used for this 
example.) 

The forms of Eq. 4-10 suitable for direct 
calculation with interpolation are 

, ,    ,_Q -poif(r-];xL) 
f^)=    expC-x^i/r!      ^^ 

(unless r = 0, and 77 < CL ; 

then use JU* = 0) (4-11 a) 

,_poif(r;xy)-Cu 
fu^u) = —77 - V - 0 

exp(-xy)xry/r\ 

(unless r = 0, and 7? > Cy; 

then use ^ = 0). lib) 
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The solution to Eq. 4-1 la is xL = nf. The where x_   and x+ are the smaller and larger 
solution to Eq. 4-1 lb is xv = nf,. values of x, respectively; and /    =/(x_) and 

f+=f(x+). 
The formula for linear interpolation is 

v      _x.f+-x+f_ (4_12) 

/+ -/. 
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Procedure 

1. Solve Eq. 4-1 la first. Use.x    =)U^,and 
x+ = ßL . The values of/are known from 
the definitions of p'L t nL . Use Eq. 4-12 to 
find xnew . Solve Eq. 3-1 la usingx     . Use 
Eq. 4-2 to calculate poif(r;p). 

2. Make a new chart, discarding the old pair 
(from Step 1) which is farthest from the 
solution. Repeat the linear interpolation 
and calculation of/     . 

Example 

1. C. =0.95,r = 3 

2. 

0.82 
1.37 

0.975 

0.82 
0.975 

1.125 

X 
-0.281 =(-r?) 
+0.719 = (1 -T?) 

-0.138 (new) 

/ 
-0.281 
-0.138 

-0.015 (new) 

3.  Repeat Step 2. Try 1.144 to be sure the 
solution is bracketed. This is close enough, 
p* = x. = 1.14. 

.V f 
0.975 
1.125 

-0.138 
-0.015 

1.143 
1.144 

-0.0004 
+0.0001 

4. Solve Eq. 4-1 lb next. Use x_ = nv, x+ = 
Hy. The values of/are known from the 
definitions of nv, \iy. 

Cv =  0.05, r 

x 

= 3 

f 
6.3 
7.75 

+0.719 = (1 -77) 
-0.281 = (~n) 

7.34 +0.0834 (new) 

5. Repeat Step 2. X / 
7.34 +0.0834 
7.75 -0.281 

7.434 +0.0099 (new) 

6.  Repeat Step 2. 6. 
7.34 
7.434 

7.4467 

/ 
+0.0834 
+0.0099 

-0.0007 (new) 

7.  Repeat Step 2. Try 7.445 to be sure the 
solution is bracketed. 

ix* =*,, = 7.45. 

X / 
7.434 
7.4467 

7.44586 
7.445 

+0.0099 
-0.0007 

-0.000057 
+0.00066 
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The randomized exact 5-confidence statements 
are 

/i < 1.14}   = 5% 
M<7.45}   =95% 

Conf 
Conf 
Conf | 1.14 <n'< 7.45 \  = 90% 

The corresponding statements for X are 

Conf { X < 1.14/1000-hr     = 5% 
Conf    X < 7.45/1000-hr }  = 95% 
Conf j 1.14/1000-hr< A < 7.45/1000-hr] 

= 90%. 

Table 4-2 lists randomized 2-sided 5-confi- 
dence limits that have special statistical 
properties. They are not equal-tailed s-confi- 
dence limits; they cannot be used separately 
for upper and lower 5-confidence limits. See 
Ref. 6 for a more complete discussion. In 
general, the 5-confidence limits in Table 4-2 
will be different from those calculated using 
the methods in this chapter. It is difficult to 
say  that  one  set is  better  than  the  other 

except in the narrow statistical sense stated 
for Table 4-2. 

4-6 CHOOSING As-CONFIDENCE LEVEL 

Choosing an appropriate 5-confidence level 
is always troublesome. There is obviously 
little point in having a very high 5-confidence 
that the ^-reliability is very low, or a very low 
5-confidence that the ^-reliability is very high. 
A reasonable compromise is to choose a 
5-confidence level that is approximately the 
point estimate of the ^-reliability; for r = 0 the 
5-confidence level can be chosen to be equal 
to the lower 5-confidence limit on ^-reliability. 

4-7  EXAMPLE, LIFE TEST RESULTS 

On a life test there were no failures. Find 
1%, 99%, 1-sided 5-confidence intervals for/n, 
and then find the associated 2-sided 5-confi- 
dence interval. 
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TABLE 4-2 

NEYMAN-SHORTEST UNBIASED 95% AND 99%5-CONFIDENCE INTERVALS FOR ß 
(ADAPTED FROM Ref. 6) 

0 01 0 0 
02 (i 0 
<i3 0 0 
01 0 II 

05 0 0 

oor. 0 0 
07 0 

012 
•14 

■Hi 
•IX 
•2(1 

025 
30 

35 
«0 

0 50 
•55 
■00 
0.1 

•70 

0 75 
■80 
■85 
1)0 

III 

II 
12 
1 3 
14 
15 

16 
17 
IS 
19 
2 0 

2 3 
2 4 

2 8 
2 7 
2 8 
2 0 
3 0 

3 1 
3 2 
3 3 
3 4 

3 5 

I'll 
17 

20 
2 2 
2 4 

20 

0 2 8 
0 2 0 
0 30 
0 3 0 
0 3 1 

0 32 
0 3 3 

0 3 3 
0 3 4 
0 3 5 

0 3 8 
0 4 1 
0 4 3 
0 4-5 
0 4 7 

0 4 9 

5 (1 

1 li I 
1 (12 

1     li'4 

fl-6 

67 
0 8 
00 

7 1 

7 3 
7 5 

(I 

u 

n 
o 

I 3 

2 I 
2 3 
2 4 

2 0 
111 

:i :i 
3 1 

o 30 
0 3 8 
0 4 II 
II 4 1 
0 4 3 

0 4 4 
0 4 "I 
0 4 0 
0 4 7 
0 4 7 

4 8 
49 
4 1) 

50 
El 

0 5-5 
0 50 

0 li I 
0 0 4 
o i; li 

0 0 7 
II li'.l 
0 7 0 
0 7 1 
0 7 2 

0 7 li 
(1 7-8 
O 8 1 
i) 8 :i 

8 4 

(I 8 0 
II 8 7 
0 8 8 
0 1 9 0 

•I 111 

0 2 9 4 
2 90 
2 9 8 
2 100 
2   10 2 

9S'/( 

3tl 
3 7 
3 8 
3 9 
4 II 

4 4 
4 5 

4 II 
4 7 

5 1 
5 2 
5 3 
5 4 

5 7 
5 8 
5 9 
00 

01 
0-2 
0 3 
II 

li 9 
7 0 

7 1 
7 2 
7 3 

7 6 
7-7 
7 8 
7 9 
8 II 

8 1 
8-2 

8 :i 
8 4 

«■6 

8 7 
8 8 

a 9 
9 0 

I I) 
1II 

19 

8 1 
8 2 
8-1 

8 5 
80 

9 5 

11 9 0 
11 97 
12 9 8 
1.1 10 0 
14 10 1 

14 103 
14 1114 
15 ll'll 
15 10 8 
1 II 109 

Mi 110 
17 112 
18 113 
19 114 
2(1 115 

20 117 
2 1 11-8 

2 1 12 0 
22 122 
22 123 

23 124 
2 4 12 0 
2 4 12 7 
2.'i 12 8 

13 1 
13 2 

I 3 5 
13 7 

29 138 
3 0 13 9 
31 1411 
3 2 14 1 
3 3 14 3 

33 144 
3 4 14 11 
3 4 14 7 
3 5 14 9 
3 li I 5 0 

3 0 
3 7 I 
3 8 I 
3 8 I 

3 9 I 

15 1 

99% 

12 1113 
3 III.'. 
3 1 ill-, 
I 1117 

■4 1118 

15 II II 
■5 113 
5 II 5 

■5 I I ■!■ 
■5 118 

I li 119 
li 12-1 

•7 12 2 
7 12 3 
8 124 

18 120 
-9 129 
9 13 0 

■9 13 2 
13 4 I 0 

I 0 13 5 
II 13 0 
11 138 

12 13 9 
13 140 

13 142 
13 144 

14 14 0 
14 14 7 
14 149 

15 15 0 
10 15 1 

III 15 3 
17 15 4 
I 8 15 5 

18 
1 9 
19 
I 9 

20 
2 1 
2 2 

15 7 
15 9 
Hill 

10 2 
104 

10 5 

10-0 
lli-7 

!-4 172 
!4 173 
M 17-5 
>. 5 17 7 
»5 17 8 

! 0 no 
18 1 

18-2 
18 3 
18 I 

95% 99% 

9 I 
9 2 
9 3 

HI II 

III 2 
HI 4 
HI li 
1(1 8 

110 

112 
I 1-4 
III) 
II a 
12 0 

12 2 
12 4 
12 0 
12 8 
13 (I 

13 2 
13 4 
13 0 

13 8 
14 0 

14 2 
14 4 
14 II 
II 8 
15 II 

15 2 
15 4 
15 li 
15.8 
in (i 

in-2 
10 4 
Hi 0 
108 

17 0 

17-4 
17 0 
17 8 
18 II 

18 2 
184 
18 tl 
18 8 

19 0 

40 
4 0 
4 I 
4 1 
4 2 

4 7 
4» 

5 1 

5 3 

7 0 

7-7 
7-9 
80 
8 2 

15-8 
15 9 
Hi I 
102 
16 3 

43 105 
44 100 
44 107 
45 108 
46 1119 

17-2 
17 5 
17 8 
18 0 
18-2 

54 185 
50 188 
5 7 19-1 
58 193 
00 195 

01 19-8 
(13 201 
64 2(1 3 
00 20 6 
6-8 20 8 

69 211 
70 21-4 
71 210 

73 218 
7 5 221 

224 
220 

23 I 
23 3 

83 236 
85 23 9 
8 6 24 1 
88 24 4 
90 24 6 

91 
9-2 

97 

9-0 
101) 
1(1 2 
10 3 
1(1 5 

24 9 
25 1 
25 4 
250 

25 8 

20 1 
20 4 
20(1 
20-8 
27 1 

10 0 27 3 
1118 27« 
109 27-8 
11 I 28 1 
113 28 3 

20 
30 
30 
31 
3 1 

3 2 
33 
3 3 
34 

36 
37 
38 
40 
41 

18« 
186 
189 
191 
192 

194 
19-6 
196 
19-7 

20! 
205 
206 
210 
21 2 

42 21-6 
43 219 
44 221 
46 22-4 
48 226 

4ft 229 
50 23-3 
51 23-5 
5-2 23-8 
54 240 

55 243 
66 246 
6-7 24» 
5 9 251 
00 25-3 

01 26-1 
03 200 
04 262 

(15 264 
6-7 267 

6-8 270 
6-9 27-3 
71 27-5 
7-2 27-8 
74 280 

7-5 28-3 
7-8 28-6 
77 28-9 
79 291 

81 29-3 

8-2 29-8 
83 299 
84 30-3 
8 (I 304 
88 300 

89 30» 
90 31-2 
91 315 
93 31-7 
05 31-9 

Notes: 
1. The pairs of figures under each s-confidence heading are lower and upper s-confidence limits for /i. 
2. Notation: 

ß = Poisson parameter 
f   = number of events observed in sample 
'V = random number from the uniform distribution on [0, 1) 

3. For tabular convenience, r, r\ is listed as r + r). 
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95% 99% 95% 99% 95% 99% 
r  + rj 

86 09 105 
, * , 
04 112 

r  + rj 

141 119 105 112 173 
r  + rj 

190 109 224 162 234 
87 70 100 65 113 142 119 100 113 174 197 170 225 163 235 
88 70 107 60 114 143 120 107 114 176 198 171 226 163 236 
89 71 108 00 115 144 121 168 115 177 199 172 227 104 237 
90 72 109 07 110 145 122 109 116 178 200 173 228 165 238 

91 73 110 08 117 146 123 170 117 179 201 174 230 100 239 
92 74 112 09 118 147 124 172 117 180 202 175 231 107 240 
93 75 113 70 120 148 125 173 118 181 203 170 232 108 241 
94 70 114 71 121 149 126 174 119 182 204 177 233 109 242 
95 77 115 72 122 150 127 176 120 183 205 178 234 170 244 

90 78 110 72 123 151 128 176 121 184 206 179 235 171 245 
97 78 117 73 124 152 129 177 122 185 207 180 230 172 240 
98 79 118 74 125 153 130 178 123 187 208 181 237 173 247 
99 80 119 75 120 154 130 179 124 188 209 181 238 173 248 
100 81 120 76 127 155 131 180 125 189 210 182 239 174 249 

)0l 82 121 77 129 150 132 181 126 190 211 183 240 175 250 
102 83 123 78 130 157 133 182 120 191 212 184 241 170 251 
103 84 124 79 131 158 134 183 127 192 213 185 242 177 252 
104 85 125 79 132 159 135 184 128 193 214 180 243 178 253 
105 86 120 80 133 100 130 180 129 194 215 187 245 179 254 

106 87 127 81 134 101 137 187 130 195 210 188 246 180 256 
107 88 128 82 135 162 138 188 131 190 217 189 247 181 257 
108 88 129 83 136 103 139 189 132 198 218 190 248 182 258 
109 89 130 84 138 1G4 140 190 133 199 219 191 249 183 259 
110 90 131 85 139 105 141 191 134 200 220 192 250 184 260 

111 91 132 86 140 100 142 192 135 201 221 193 251 184 201 
112 92 134 80 141 107 142 193 135 202 222 194 252 185 262 
113 93 135 87 142 108 143 194 130 203 223 195 253 180 263 
114 94 130 88 143 109 144 195 137 204 224 195 254 187 264 
115 95 137 89 144 170 145 190 138 205 225 196 255 188 265 

116 96 138 90 145 171 140 197 139 200 226 197 256 189 260 
117 97 139 91 147 172 147 198 140 207 227 198 257 190 208 
118 98 140 92 148 173 148 200 141 209 228 199 258 191 269 
119 98 141 93 149 174 149 201 142 210 229 200 259 192 270 
120 99 142 93 150 175 160 202 143 211 230 201 200 193 271 

121 100 143 94 151 176 151 203 144 212 231 202 202 194 272 
122 101 144 95 152 177 152 204 144 213 232 203 203 194 273 
123 102 140 96 153 178 153 205 145 214 233 204 204 195 274 
124 103 147 97 154 179 154 200 146 215 234 205 205 196 275 
125 104 148 98 156 180 104 207 147 210 235 200 200 197 270 

126 105 149 99 157 181 155 208 148 217 236 207 207 198 277 
127 100 ISO 100 158 182 150 209 149 218 237 208 2G8 199 278 
128 107 151 101 159 183 157 210 150 220 238 209 209 200 279 
129 108 152 101 1G0 184 158 211 151 212 239 209 270 201 281 
130 108 153 102 161 185 159 212 152 222 240 210 271 202 282 

131 109 154 103 102 186 100 213 153 223 241 211 272 203 283 
132 110 155 104 103 187 101 215 153 225 242 212 273 204 284 
133 111 150 105 104 188 102 210 154 225 243 213 274 205 285 
134 112 157 100 100 189 103 217 155 220 244 214 275 205 280 
135 113 159 107 107 190 104 218 156 227 245 215 276 206 287 

136 114 1(10 108 10S 191 105 219 157 228 240 216 278 207 288 
137 115 161 109 109 192 100 220 158 229 247 217 279 208 289 
138 116 1G2 10!) 170 193 107 221 159 230 248 218 280 209 290 
139 117 103 110 171 194 107 222 ICO 232 249 219 281 210 291 
140 118 104 111 172 195 1G8 223 161 233 250 220 282 211 292 
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TABLE 4-2 (Continued) 

95% 99% 95% 99% 95% 99% 
+   T) r + 1} 

30-2 
r + 7) 

430 27-8 19 2 11-4 28-6 96 322 202 41-7 17-7 46-1 310 566 61 6 
19-4 11-5 28-8 9-7 32-5 30-4 20-4 420 17-9 40 4 435 31-3 57-2 28-2 62-2 
19 6 11-7 29-1 9-8 328 300 20-5 42-2 180 406 440 318 57-8 28-6 62-8 
19-8 11 9 29-3 10 0 330 30-8 20-7 42-4 18 2 40-8 44 5 32-2 58-4 290 63 4 
200 120 29-6 10-2 33-2 31-0 200 42-7 184 470 450 32-7 58-9 29-4 670 

20-2 12 2 29-8 10-3 33-5 31-2 210 42-9 18-5 47-3 45-5 33-1 59-5 29-8 04-0 
20-4 12-3 300 104 33-8 31-4 21-2 43-2 18-6 470 460 335 00-0 30 2 05-2 
20-6 12-5 30-3 10-6 34 1 31-6 21 4 43 4 18-8 47-8 46-5 33-9 60-0 30 0 65-8 
20-8 12-6 30-6 10-7 34 3 31 8 21-5 43-6 18 9 481 470 34 4 61-2 311 06-4 
210 128 30-7 10-9 34 5 32-0 21-7 438 191 483 47-5 34-8 61-8 31 4 670 

21-2 130 310 110 34-8 32-2 21 9 44 1 19 3 480 480 35-2 62-3 31 9 07-5 
21-4 13 1 31-3 111 351 32-4 220 443 194 48-8 48-5 35 6 62-9 32-2 08-2 
210 133 31-5 U-3 353 32-6 222 44-6 190 49-1 490 36-1 63-5 32-7 68-7 
21-8 13-4 31-7 114 35-6 32-8 22-4 44 8 19 7 49-3 49-5 365 64 1 33 1 694 
220 136 31-9 no 35-8 330 22-5 450 19-9 49-5 eo-o 369 64-6 33-5 699 

22-2 13-7 32-2 11-7 301 332 22-7 453 200 49-8 50-5 37-3 65-2 33-9 70-6 
22-4 139 32-5 119 364 334 22-8 45-5 20-2 500 510 378 05-8 34-3 711 
226 141 32-7 120 36-6 336 230 45-7 203 50-3 51-5 38-2 66-4 34-7 71-7 
22-8 142 32-9 12 2 36-8 338 23-2 400 20.r> 50-5 52-0 38-7 60 1) 35-1 72-3 
230 14 4 331 12-4 370 340 234 46-2 20-7 50-7 52-5 39-1 67-5 35-5 72-9 

23-2 14 5 334 12-5 37-3 34-2 235 46-4 20-8 51-0 530 39-5 680 300 73-5 
23-4 14-7 33-7 126 370 34 4 23-7 46-7 210 51-3 53-5 399 080 363 741 
23-8 148 339 12-7 37-9 34-6 23-8 469 211 51-5 540 40-4 09 2 30-8 74-6 
23-8 150 34-1 12-9 38 1 34-8 240 471 213 51-7 54-5 40-8 09-8 37 75 
24-0 15-2 343 131 383 350 24-2 47-3 21-5 51-9 550 41 3 703 38 76 

24-2 153 346 13-2 38-6 35-2 24-4 47-6 210 52-2 50 421 71-4 38 77 
24-4 15-5 349 13-3 389 35-4 24-5 47-8 21-7 52-5 57 430 72-0 39 78 
24-6 15-7 35-1 13-5 39-1 35-6 24-7 481 21-9 52-7 58 43-9 73-7 40 79 
24-8 158 35-3 13-6 39-4 358 24-9 48-3 221 52-9 59 44-7 74-8 41 80 
250 160 35-5 138 396 360 250 48-5 223 53-2   ' 60 46 70 42 82 

25-2 161 35-8 140 399 30-2 25-2 48-8 22-4 53-4 61 46 77 43 83 
25-4 16-3 30'1 141 40-1 3<»-4 253 49-0 225 53-7 02 47 78 43 84 
25-6 10-5 303 14-2 40-4 366 25-5 492 22-7 53-9 G3 48 79 44 85 
25-8 166 365 144 40-6 30-8 25-7 49-5 22-9 54-2 04 49 80 45 86 
260 168 36-7 146 40-8 370 25-9 49-7 230 54 4 05 60 82 46 87 

26-2 170 370 14-7 41-1 37-2 260 49-9 232 54-6 GO 51 83 47 89 
264 171 37-3 14-8 41-4 37-4 20-2 50-2 233 54-9 67 52 84 48 90 
26-6 17-3 37-5 150 41-6 370 26-4 50-4 23-5 55-1 08 53 85 48 91 
26-8 17-4 37-7 151 41-9 37-8 20-5 50-6 230 55-4 09 54 80 49 92 
270 17-6 37-9 15-3 421 389 26-7 50-8 23-8 55-6 70 54 87 50 93 

27-2 17-8 38-2 15-5 42-4 38-2 269 511 240 55-9 71 55 88 51 94 
27-4 17-9 38-4 156 42-6 384 270 51-3 24 1 50-1 72 5Ü 81) 52 96 
27-6 181 38-7 157 429 380 27-2 51-6 24-3 504 73 57 91 53 97 
27-8 183 389 15-9 431 388 27-4 51-8 24-4 56-0 74 58 92 54 98 
280 184 391 161 433 390 27-6 520 24 6 56-8 75 59 93 54 99 

28-2 ISC 39-4 16-2 43-6 39-2 27-7 52-2 24-8 57-1 70 00 94 55 100 
28-4 18-7 39-6 16-3 43 9 39-4 27-9 52-5 24» 57-3 77 01 95 56 101 
28-6 18-9 39-9 16-5 44-1 39-6 280 52-7 25-1' 57-6 78 62 90 57 102 
28-8 191 40-1 16-7 44 4 39-8 28-2 52-9 25-2 57-8 79 02 97 58 104 
290 193 403 16-8 440 40-0 28-4 531 25-4 580 80 03 98 69 105 

29-2 194 40-6 170 44-9 40-5 28-8 53-8 25-8 58-6 81 04 99 60 106 
29-4 19-6 40-8 171 45-1 410 29-3 54-3 26-2 59-2 82 05 101 60 107 
29-6 19-7 410 17-2 45-4 41-5 29-6 54-9 266 59-8 83 06 102 01 108 
29-9 199 41-3 17-4 45-6 420 30-1 55-5 270 004 84 07 103 «2 109 
300 201 41 5 17-6 45-8 42-5 30-5 56-1 27-4 610 85 68 104 03 110 
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Procedure Example 

1.  Use Eqs. 4-8 and 4-9 along with Table 6-1.      1. r = 0, CL = 1%, Cu = 99% 
csqf{9.2\ 2) = 99% 

csqf(0.020\:2)= 1% 

My =4.61 
nL =0.0101 

My = Mt = 0 

2.  Make the feasible 5-confidence statements.     2. Conf    /-i< 4.61   } > 99% 
Conf i M < 0.0101 > 1% 

3.  Find the randomized exact 5-confidence 
limits. Use the method near the end of 
par. 4-5 to find the random number (Let 
heads -*■ 0, tails-* 1). 

3. The coin Hipping sequence is T, H, T, T, H, T 
which gives the number 0.703125. 77 = 0.703 
(truncated) 

4. Solve Eq. 4-1 la. Since r = 0, check the 
condition "77 < CL ". 

5. Solve Eq. 4-1 lb. Since r = 0, check the 
condition "77 > CL, ". Since r = 0, Eq. 
4-1 lb becomes M*- 

= £n(rj/Qr) 

4.  77 = 0.703, C, 0.99 
77 < Cj ; so /i* = 0 

5. T7 = 0.703, Cy =0.99 
77 <CU ; so /i* =£ 0. 

M[/- ■*-3.39 

The randomized exact 5-confidence statement is Conf j 0 < ß < 3.39 98% 
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CHAPTER 5 

GAUSSIAN (s-NORMAL) DISTRIBUTION 

5-0    LIST OF SYMBOLS 

C - s-Confidence 

Cdf - Cumulative distribution func- 
tion 

C, L, U = subscripts that imply a «-con- 
fidence level; C is general, L is 
lower, U is upper 

CMi j   }       = ith central moment 

Conf { }      = s-Confidence level 

csn = base  name for chi-square/nu 
• distribution 

CV { } = coefficient of variation: 
StDv{    )IE{    } 

E\   » = s-Expected value 

gau = base name for Gaussian (s-nor- 
mal) distribution 

gaud = pdf for Gaussian s-normal dis- 
tribution 

gauf = Cdf for Gaussian s-normal dis- 
tribution 

gaufc = Sf for Gaussian s-normal distri- 
bution 

gauhr = hazard ate (failure rate) for 
Gaussian s-normal distribution 

Mi \   \ = ith moment about the origin 

N = sample size 

NCM, 

Pdf 

pmf 

Pr{   > 

PrD 

R 

normalized   ith   central   mo- 
ment:   CM,\     }/[StDv{   }]' 

probability density function 

probability mass function 

Probability 

Probability distribution 

s-Reliability 

s statistic 

s- = denotes   statistical   detinition 

t = t statistic 

Sf = Survivor function 

StDv i   } = standard deviation 

stu = base name for Student's ^-dis- 
tribution 

Var  ' ! } = variance 

X = random variable 

X = sample mean 

z,Z = (x - ju)/o 

M = location parameter 

V = degrees of freedom 

a = scale parameter 

X> 
= (x2 IV) statistic 
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I •;• i .(•;*)= the fixed parameters are listed 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

= the complement, e.g., 0=1- 
0 where <p is any probability 

5-1  INTRODUCTION 

The Gaussian distribution is a good approxi- 
mation to the central portion of many distri- 
butions, and often is used to describe the 
random behavior of product performance. 
The base name gau is given to the Gaussian 
standard (s-normal) distribution (for 
gaussian). The suffix / implies the Cdf, the 
suffix fc implies the Sf (complement of the 
Cdf), the suffix hr implies the failure rate 
(hazard rate) 

5-2  FORMULAS 

ft      = location parameter 

a      = scale parameter, a>0 

x      = random   variable,  it   may  take  any 
value 

z       = (x — ft)/o, standard s-normal variate 

pdf{x; ft, a} = (1 l^lio) exp[- (-^ V/2] 

= (l/o)gaudl(x-ft)/o]       (5-1) 

Cdf {x; ft, 0) =gauf[(x -ft)/a] (5-2) 

Sf{x;ft, a) = gaufcKx - ft)/a] (5-3) 

failure rate {x; ft, 0} = (\ / a) gauhr[(x - ft)/a] 

(5-4) 

E{x\ft, a) = ft E{z } = 0 

StDv{x, p,o} = o StDv{z} = l 

CV{ JC; ft, a} = a/ft, for ft > 0 

CM 3 {z} = 0 

AO/3 {z } = 0 

NCM4{z} =3 

mode {z}   =0 

median {z} = 0 

CM3{x-ft,a} = 0 

NCM3{x;ft, a} = 0 

NCM4{x;ft,o} =3 

mode {x; ft, a) =/i 

median {x\ft, 0} =ft 

Figure 5-1 shows some curves of the pdf 
and failure rate. The random variable x always 
can be scaled to z so that curves for all values 
of (ft,o) become the same. The PrD for z is 
called the Gaussian or standard s-normal distri- 
bution. 

The ^-normal distribution often is applied 
to characteristics which are inherently non- 
negative such as length, weight, strength, and 
time-to-failure. In order that there be no 
conceptual difficulties, the coefficient of vari- 
ation ought to be at least 3; then the negative 
fraction is quite negligible. Truncated (on the 
left) 5-normal distributions can be used (the 
theory is straightforward) but the extra com- 
plication is rarely justified. Where the trunca- 
tion would be necessary, one often tries a 
Weibull or lognormal distribution instead. 

5-3 TABLES AND CURVES 

The pdf is calculated readily, not often 
needed, and tabulated in many places; so it is 
not given here. See Ref. 1 (Table 1 and Sec. 
1) and Ref. 2 (Table 1). The Cdf is given in 
Tables 5-1 and 5-2. It also is given in virtually 
every probability/statistics/quality control 
book and set of mathematical/statistical 
tables. The failure rate is given in Table 5-3. 
Formulas for calculating these and related 
functions are given in Ref. 3 (Sec. 26.2). 
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TABLE 5-2 

GAUSSIAN (STANDARD s-NORMAL) Cdf - gauf (z) 

gauf (z) 

gauf (z) .00 0.01 

Body of the table is z, the standard 
s-normal variate, corresponding to 
gauf U). 

0.02       0.03       0.04       0.05        0.06       0.07       0.08       0.09 

.00 -2.33 -2.05 -1.88 -1.75 -1.64 -1.55 -1.48 -1.41 -1.34 

.10 -1.28 -1.23 -1.18 -1.13 -1.08 -1.04 -0.99 -0.95 -0.92 -0.88 

.20 --0.84 -0.81 -0.77 -0.74 -0.71 -0.67 -0.64 -0.61 -0.58 -0.55 

.30 -0.52 -0.50 -0.47 -0.44 -0.41 -0.39 -0.36 -0.33 -0.31 -0.28 

.40 -0.25 -0.23 -0.20 -0.18 -0.15 -0.13 -0.10 -0.08 -0.05 -0.03 

.50 0.00 -0.03 0.05 0.08 0.13 0.13 0.15 0.18 0.20 0.23 

.60 0.25 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.50 

.70 0.52 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.77 0.81 

.80 0.84 0.88 0.92 0.95 0.99 1.04 1.08 1.13 1.18 1.23 

.90 1.28 1.34 1.41 1.48 1.55 1.64 1.75 1.88 2.05 2.33 

Special Values 

gauf {z) 0.001 0.005 

-2.576 

0.010 

-2.326 

0.025 

-1.960 

0.050 

-1.645 

0.100 

z -3.090 -1.282 

gauf {z) 0.999 0.995 0.990 0.975 0.950 0.900 

3.090 2.576 2.326 1.960 1.645 1.282 
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0000000000 ooooooo-*— «-• H -*^^ ^ -*-«ry f\j ru f\»Mrwr\j^^i^f^^^ 
&■        OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO oooooooooo 
O llll|lllllllllllltll||I 

*•       jJjAJ^j^JdidJ^JAJdJ üJJUJjJjJjJoJ-üuJjJ «kJJsiJuJ^JaJaJiliUdi jJjJ^JdljidJjJjJoi^ 
0 Otc^t>'0«-»'\if\j'h''M'M i^-^c-^coxrvjiPipro MNNMKNj^rMo O''\jru<\i^o<\j^)^>0' 
1 »»ifl -fl   JiOi/lD  -«  -*1 J Jl ifl   3   O  -^ iiM  » » '> i\0   0«^D  O-J   -*>^> r\J-*%-*'Jl»S»-«r\|%nAi 

^of\J^3^Ä-*o^ ip ru r\j ;p —i»  o to ^ p^r*-»^*-ioO',--C',o'fc- ^JB^^aoio-o» 
»0D'\JX^.O-N'*1ff IAM»   Ä   5   -0-A50    fl iP,ß[>»0X:*O.-«--».P ■^^'^ruO'^tOO'^ 
K-Ofi^jiaj^ivi'U <\jru-*—. — -».~ixotP 3 ^ r\i *\j -* « -• x -© a -^ M -< -<» ü 3 w ry -^ 

00000000*30 OOOOOOOOOO OOOOOOOOOO OOOOOOOOC-O 

oooooooooo ooooooo-*«-»-* ^.^^^^«^MMM Mfyfurvj^i^t^'o-A'^ 
x   oooooooooo oooooooooo OOOOOOOOOO oooooooooo 
O «tllllllltttlltll&lflll 
•          IAJJJJJJJJJJJJJ-U^JJJ jJuJjJjJjJ-fcJuJjJjJjJ lldloidJoJjJJJ^JtiJ JJJJJJJJJJJJJJJJOJ-»-' 

O         ^JCTff-^O-^aOJJf«" f\» MiT»  "O ff   ^  f\J a  /i   Ä XrO^-OlPOXtP**!'*- KON^-flNOai/1 

■       O^IP^J^-^'NJ-^O o-»—cjo^n^o-^ipjt ■*i-<{r»^Tr*--o'\j»-* O^OJCT/I-OJKT' 
r^xxr\jox-*-o^.p o ji ji e ci •-< M o»\j ji ^^i(>*iflrtoff«»- ^aa^j^^aa? 

r— xXiPiP-s^"'".^!^ ru'M«—•—•—♦ — x *--  in ;i «n rvi <\» — —• —• oo x  3 -^nj--»--iO-^)3t>or\j—• 

OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

oooooooooo ooaoooo——-• —t ^-•-^*^-^-*—.^.AJ^ru fyxjiyM^-n^»"^^ 
>■   OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO oooooooooo 

S   O I  I  t I  I  •  I  I  I  I  I  I  ■ I  I  I  (  I  «  I  I  I  I 
0)           »         JJJJJJJJ^J^JJJOJJJJJ jjuJ^ijJ-UjJjJjJaJjJ jJL*JuJjJaJ-iJjJ>iJjJ-iJ jJjJaJUJjJaJuJaJjjaJ 
3     o      xoi\j — o-c»»^=t3 o -«5 3 -o «in B^ n) -IT-I^^KIC3 o^ 3—o3»*offcofu"'i 

•—               >OI\I:J'X^-^;POXX rutnco^,'i'0-o<iN- r-~;3'X:\jor--^iMo.P XAICX»—«=»^v>o 
g              r*>*^f^^i's-*y«-^iT fiMffssMojjMj soo3»»'Hfl^a ji^»>nü)N'\jf\j/i 

Ü         OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

*"^      oooooooooo ooooooo—« —« —» ^^„rtwrt^.'vjfMfvi r\jnj'\jrvfyi^»n^Ki^ 
UJ   X    OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 
Ho aiiiiiifiiiiiiiiiiiiiii 
rf            »         JJ-U-UJJUJJJOJJJJJJJ JJ   _U JJ   UJ   J.)    JJ  JJ   UJ JJ   JJ jjjjjjjj^jjjj.ijjjj-ij -U-iJjJjJjJ^ijJaJaJ-*-' 
jy     o      ico'^^^fy^-oa/i — *o r-^ :»■ o nj — .P r-- CT- onj^iciu^  o^^-o njxf\i'\jf«t;jwfrfii\t"'t 
"*         I           O*ON>q03>-Ofl J-—t'\j'\|-«^)f--J"t"0->n 43-O/IJ    "OtM^O ^tTJI-t-O-M-VJXoO" 

cootfliMoaruftj LPOJ—<»*»XLP-P!"VIOO- ^"i^i03--j)^ff'0 OOC-^O-OIMCT-HJ-C 
flJSOM^'OtjO X"*10r-:-jr\JoX-^:> X»-^;»:r.p-*XXO X'-'^^OO^^I^O-P 

flC      ^-c-0J^Lf*^3"O-^**> nj'xjrvi»-*-«—•—■x^-iP cjp'i'^trx*— -* — xxx ^i\j«-^N3^f\j« 

OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO ooooot. ooco 
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IA 

N 
^ oooooooooo oooooe-o—«—*.-* ^.rt — ^^.^wajojfxj r\>'Vi'\j'\]r\jr'*i»*i'*ip*"i"'1 

1 ,p OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 
*—■ o eiBiiiiiiiiiiiifiitiiii 

IU o      ^-43^ff-ieoso jit^^ci/itMca   o N^ryNc^c^tc«) -• ip ru **i x —• •-> •*> TJ  4> 
r- i       --a ;» x -u —• x — •** ^ a- a^MJ^^nN^fl CT'X-^.PX^.OO'-^O 5*>o>xxi"»o — M 
«^ -O^/liT^^^^^C ».P^LPOr^r«-*::»— ^«-3»/ff-MtlP -»^/"O^OMw^ 
— XOTX"^X-OX^O O-^O^J^-MOO^?-« JO'yflffinH^t)« X   "--   O  ^   O **t  —i  il   3   il 
" NN<C/'iT3   3ffl^fi *\j Aj rtj «— —. —• — (C N  x tt^Mi«---«©   ^)lT »*>  r\j f\*  *— -*h  if  ft\  " 

CO        ui ■.••-»-■»•• .».•••••.. ..•■•»...• .   .   .  • 
„ ocoooooooo COOOOOOOOC". oooooooooo OOOOOOOOOO 
DC 
3 oooooooooo ooooooo—• — ~« — „^^«^wfMrviM 'Xjrviojrvjrvj'^-^H^^'^ 

■•*     _J ^f    OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 
—I   —. o iiifliieiiiiiiiiiiiiiiii 
QQ            xj •       ^Jiii^l^JoJjJjJ-JJ^i ^jJJ.üuJ4ijj^iJj J uj ij j JJ J J iJ j JJ jJiiJjJ^Jv*JiJAjj.ijjjJ 
^          ii o       oxiaCN-flM^^ir *\J.P—«xrviOcrKiwio- -^KIDO   OIVS^O -vjo'MocrvoxCT''*^ 
LJ I          X3'Xr*-:yX?-XO*t 0-0'MO^'J'^^0> j-»r^-».x»--^1XJ">--.P \JO^J^f\)3oJ»S 
~              —- "MO—«^OCCO-^OO •OJJME'va'OiPff^ XC(0C=»a-Ajr^X'O ■*"lXO-or--CiO',CC0' 

2 ^«/IT s*^»^- •v-io^ji'\jo^ln'\i o-*ru-ooj"v*\i-no-*i ;>xo,po.n"\jo.P-o 
^ r-r-^x.PvPo^-'i-'i-'i ryyvj •■■ «-*-*.-. ty r-  x x-^ror\jru-«-*^'?^iP ^ r\j -\j _ -* ". .P t-o I\J —• 

(^5 OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

—J OOOOOOOOOO OOCOOOo—«— —• , M«^«^^(\JfU<V l\Jl\'VfVlf\ji^'*r'. wi^ 
^ t^l    OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

O *         ^JjJjJjJiiJjJ-kJ-UjJjJ JiJjjJiJiJjjjJaJjj jjxJjJoJ-jJjJjJJJ-tJjJ jJJiJiljjAjjJijiijAl 
—— o       x— ^IT»M£ w njip f\j-Of\ixr*-CT-r\j--'XO' ^x^^-xxru^^^» />cft,MX—Orva^ 

, I       x> o 3 -o MD 4 "0 33  "y xJ,f\]"^,no:3'-t.cj'» -\ir>-r\iy-X)3-—*c~+'*i •OXüO'M.POOH^-O 
™ (C^soirKi3t3  3 x—o—-ir>ru—«ix-nx cyo-xoo-'^-C'^j'^D irNJü^ji^ccC 
^ ^^POTJ    30T    •* ^3««^^^^^^ *-•—.-nXOX'VÖ'y:* 00—•J"t^O^X>-Or'* 
5 ^~-F,-X<,JlP33*'"r^r" rv'V'Vi'-"'^'--D-'v-^l |T ?J   fi fVj ftj -   —» O*   h- X- 3f\»f\,^-— v 'X KI (t »• 

OC OOOOOOOOOO COC.OCOOOOO occocccooo occ:coocooo 

o 
z    «, 0000*000*000 0f<D00OO00*O0 
<^        O                                                                                                                                                                  l*tlll«lllll*«lll*llll* 
Q* dJJdJdJUi^JjJuikU.4j dJ   -Jol   ^J  -J   JJ UJ   MJ   iJ   dJ          jJjJjJ.iJjJjJjJjJjJJ-t 4J   iJ ^J  UJ   «I   .U   -ll   J dJ   J 

C» OO'wiTK'afCMaN iTff'^3inff'^'^3(C          3kPJ,*©COO'^O,0O ^^^0^0*31/1^ 
CC         • •\IO«^ty^*3*3'XO--« '\jrU'VJ-«X'M'^3'r»,-l          -^y^-XJOO^^OJ^ J>   r\jh.   ^   ^^,   -n  ^   il N 
rf iTIfl  W  IT  ^ C   ff   Mff   Ä OITKI   3  r-   3   ^  O-  IC  U1           CX'^'^liPr-O'OOfü NN^win^O'   30^ 
— xrvooj**(y^oj^--« D3-TJji^-43ii3       ■^I'XJ^-*—  —«.o<\i;>.p-0 —•or\j^)-^^.*3{>,*-*> a z 
^ 0.000000000 OOOOOOOOOO OCOGOOCOOO OOCC^0«3OOC*0 
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N 

OOOOOOOOOO          COOOO   OO—  —• —■ -.—  —• —-„-.^t--«f\'f\. ^fVjMfXJft;)^^^^^ 
0*000*00000    0           OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

its eaiaisiiii BIIIIIIII* 
mujjwwujuaiujuj       yUdiiuuJuJujuJijy uJuJUJoJUJUJaJoJUJi** ujüiujLiixidJiuijJUJUJ 
-noxr-o-=io-ox^       -.J^^/^Jtp'*^lP^-f^l•,*- AJ-~-X^<CX3^-XX ^O-=J*^^—^r^r^-f 
Jl^-H.nSO'^^'M«         Ot-0M"»0,':V*J'*',**f,,~-Or*» -\jfO»^r—-^ty-3*»*-iP'\I JJ^O-—    «--X-^-^'OO* 
—'O-O1—• * ?y ^ f- **i f\j       mxx-ooXiPXr*iry —«x— o-o-^ru—  —«o- ox--*^oa''Vioa'-^—• 
»f\l-0-^tPO*tpox'Xi        X3'-^X>0^—»-OOX« ^ -^ ji ^- ry N ^ o f- *- r^i—«-^ix-*=T(yo*X* 
r^r^xxiPiP^^Jr^*«       f\jiMi\ --- — o- to -o ip^H^rvjfx*-- —•— N-IP 3 ^ fy-< «^« IT 3 ftj *• 

OOOOOC-OO'OC         OOOOOOOOOO ooooooooc>o 0000.000000 

oooocoo—1-*—• »-.-*-*—.—.-*^-—«r\i?\j ftj r\j tvy  fv^ rt rfi ■Af^ 
0000*000000 OOOOOOOOOO OOOOOOOOOO 

lit iiiiiiiit» »   •   •  1   1   r   t  1   1   1 
ui J oJ MU uJ tU Ui UuJ   UJ        u uUoi UJui   Uoi U1UJ U uinJuJtUai  jJkluiUJjJ UiuJaJUlUJLiJi4JuJt&J^J 
a ^ K fu« «in r\j>o w       0^3 i^ir 9 I/)«I^ « o3ifl3o*N^ K^ o^o^-a*<^o^^^**•K- 
«rtof^JGD—t-^^iP**      «o^r^^r^M^hriO'iP =r«ji*-i^(i>rt^iPiP»^ N o^»n  fy« o«o ■* 
r- iP tp t- —•O'Ch—»p^^>       r<- >y» » ty <or^ ^ & ^ WKO'-fi.n*«'*^* ^MO fy roftifti^  *•« 
t>t*tr--~*-OOtP~44>iM        xiip-*«x»f^—■ X ^« P~ ip»ip«ry^— **IO>^0- * MrtK   Ms   -*fy» » 
KK-d 4tnm33rt ^      fu#\if\i — — -*. — » e « «13 ^WM «-n-Kin » ^ *v —• -*• -o =» «J -* 

00000*0-0*^00          OiOOOiOOOOOO« eoooesooo«ooo OOOOOOOOOO 

OOOOOOOOOO         •*-*——• — — *-. ^ •* ^ lUAlftinilUMNIUfUN rtlArtrt   K1rtl»\l»>K»rt 
111111*11             •      •     •      •     I       I      I     •      •     * 9     *     •      «       I     •      (     *     »      • »IIIIIBIt» 
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333333mm-f<;n «444  4NKKKO a4iOO'^OkOOOr4 —i >4 ^ nj r\( IM K) M M( 9 
^          OOOOOOOOOO 0-000000000 OOOOOO«-» —* —•— ^  x^  ^rt^wri  ^  « 
O          I     I     I     t     I     L     I     1     I     I ■     1     I     I     I     I     I     I     I     • IIIIIIIIII I     ■     I     I      I     ■     I     •     f     I 
• UUI<JaiiJ.4i4lUlliJUi -UOJUJ^iuJiiijjMi^JuJ t*J,4JtAjuJl*IUJaJ-fcLl-UtAJ UjjJaJjJUJ^JjJjJjJjJ 

O         l/lffN^fftOOO^t* ^ftttftDVff^lf^ »3JM\lMV**"104 3N^^eD3  0KSC 
t       »,oi>j'0>-*-*-Afcn-*'\i -•■j>»*io#»-(0»<t#isj^* .0(t>"\j3t>-*.r»-o~-o ^"UO-^-A-3 0 —•O'M 

Ch-»ruo»^-<l»^in'0^> 9S»4K1ifl^»J^ <\JO'M'\l3<t>'yi)   -DO 7N>/lfMr\|xim,/1><»' 
r\i-*o.ooo.o-*j>,/% 3-of»:>—./»»-^o--* mero3:03««0'-. o >t ^j> ^IVN 4) 'M 3 
O^Jiy^^«5A(^ (^LT)P04-«*<4>)^f\|-«-0 *#1**-*,/*'\|-***-,l*t-*0' 9<M~*.nr\i~*tri<M'*(J-l 

OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

?59a?»mi/\,/>ji -o-a-o-o-o^t^r-Nx '©«(oo'cr^oooo ^^«<nji\ta<i^'^'^3 
X   oooooooooo OOOOOOOOOO OOOOOO-*-* —• -* '  _«—._-,—.,*„.„,._♦_♦_ 
o  tiiiitisti IIIIIIIIII   iittiiirt» •««•itiiii 
• LiJ<jj4j4)xlij4j^)XljJ ^JdJjJjJ^JxI^iXlxt^l 4j<ll4J^iJ-UAlJOJ<Aj jJjJ-üJjjjJaJjJ^JaJ 

0 rvj^OtC'M-O^O'M^irtao fr-3i"nx,ootft—«cnrvi -a'VJO-X'-Oo-'i—x.n rv^rvijiKK^aos 
■          ^ »   X  **1  X   —« «O »   >   ^J *>N.nX<\(3N-0;>'Cr' N3«)rtT'\J'\Jff03 —•C^■»-3^*--*.:>ÖO,-^ 

x o »■ AJ 3 —iff mm 4 ■'ldMAOri^ni^^ s^on^io^kno^ o»^ a f\i^i o* ^M 
«^-*.*^^—■0'«*)-0X> I? J ifl C»"W1> ? MM J) »*^00"^O.n-«-*-«0 M^'\Jt>iD'0*VJt)-aOl 

oooooooooo OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO 

■<i3353*iP^^^ /i^iOÄC^^^Kt) xxsca-a-ooooo ^^--yMM-O^^I 
rf—.  N   OOOOOOOOOO OOOOOOOOOO oooooo-* —• —• —• —•-*—.-*—•—»—«—.*,-« 
"U  o   I I • • I I I • • t IIIIIIIIII llllilllll llllilllll 
Q)           *        UJlfcJjJ-*i<*JuilkJ»*i.iJaJ lU^iJjJaJaJJuJ^JiJ JJJJUJJJ^JJJJJJJJJUJ jJ»iJuJjJjjjjjjjjjjjj 
3     o      o&f\it?-ci>-*x>0-T> *-»r*»Mo-03 3 — <*> <r aii^atrDo^-oa IT»—.^>ir*ruj^^- — ^a: 
C      ■       >'U'U7S'0<HM^J] ./»■**.o^»o*-'\i3o M»»--\i»\i»no-3« M>D»^BJJ)"V» 
"P               ooaaMfi'O'vajM =r.c-*<D-o-*-r>i/>-«r- BjimoatJ^^rM x-^«oj-:j«ioa--*-* 
C                      O-O-^BÜ^^^Xl*-- O'Ml'-^M-O^'O'OM J^^^'VO^J'U-« /l"-^^03^J3J 
Q              —^ ^o ^ ^u —iw^ 3 »\i -■ ~-.c*nf\j-*p^^/\j — f- ^/\I^*^«IO a M- inM^^^^^^^^ 

*—»        OOOOOOOOOO oocooooooo OOO OOOOOO O OOOOOOOOOO 

QJ     m^43»3in^^j> iT4*j>i)N^KK.ji xxxo-o^cr-oooo — -* — '\jnj'\j-*i-n-^3' 
L„   O    OOOOOOOOOO OOOOOOOOOO OOOOOO-i—• —■ -• -»-*-._-«_*_,*-^.-«-* 
JO    llllilllll llllilllll llllilllll llllilllll 
■*           •         jJjJjJjJaJuJjJaJaJaJ jJ4j4JJ-JJj4JdJJ JJ^JOJJJJJJJUJJJJJJJ AJJJAJJJJJJJJJJJJJJJ 

OC        O         (>-*<»    «OM  ON   3 3"0-*l'*10-f-''*t.ON~X 3t)""    J'/I'VIN-t'Vi^ -»ÄffJ33    3iOi^"^  — 
1 o^ -o-Mi) "O * » y/if-^oxo — -o -» «-• o 3 N » jyi'yo^ -<MDO^»»X)-O'\) 

Q                '/>ör*^^^*o**^ c* (7- —• o 3 nj —• o- o   —* -r^f^-oj^c— ,o —■ o ff3^«ij^j^ji 
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5-4 PARAMETER   ESTIMATION,  UNCEIM- 
SORED SAMPLES 

Estimation for uncensored (complete) sam- 
ples is very easy and straightforward; if the 
samples are censored, more complicated tech- 
niques must be used. 

Conventional wisdom uses the estimators 
(for a sample of size N): 

o 

sample mean = x 

(sample   standard   deviation) 

X v     = 5 statistic. 

ix is unbiased and maximum likelihood, s2 is 
an unbiased estimator for a2 but s is a biased 
estimator for a. 

The maximum likelihood estimator for a is 

aM L = sample standard deviation. 

Other useful estimators are the sample median 
for ß and various measures involving the 
sample range for o. These other estimators 
will not be discussed further here but can be 
found in most textbooks on statistical quality 
control or in Ref. 1. 

t = (5-5a) 

has the Student's /-distribution with v = N — 
1 degrees of freedom. This fact can be used to 
set ^-confidence limits on ja : 

Conf {n < x - ts/^TT} =stuMt;N-\) 

(5-5b) 

ix2lv) = s2lo2 (5-6a) 

has the chi-square/nu (x2 /v) distribution with v 
= N — 1 degrees of freedom. This fact can be 
used to set s-confidence limits on a: 

Conf (a2 < s2 Kx2 /")} = csnfc[{\2/v); 

(N-\)\.     (5-6b) 

The subscripts L, U are used to denote 
Lower and Upper s-confidence limits, respec- 
tively. 

Joint s-confidence limits on n and a are not 
feasible. The cases where either (ioro (but 
not both) is known are simpler to treat but 
are rarely met in practice. 

5-5 EXAMPLES 

The following data on strengths of a plastic 
bar were taken from 1 lot of bars. They are 
listed in order of occurrence. All have the 
same units, which are ignored here. Assume 
s-normality and estimate n and o, along with 
suitable s-confidence limits. 

89.0 
105.2 
105.2 
107.7 
99.5 

85.8 
93.3 
87.5 
92.3 
95.6 

iV=10 
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Procedure 

Calculate the sample mean x , the s statis- 
tic, and the degrees of freedom for s. 

2. Estimate fi and a. 

Example 

1. x =96.11 
s = 7.92 
v =10-1=9 

2. A =96.11 
& = 7.92 

3. Calculate s-confidence limits on ß. Use 
Eq. 5-5b. 

4. Calculate s-confidence limits on s. Use 
Eq. 5-6b. 

3. ForC=5%, 95%, and i> = 9 
h, s% = ~ 1-833, t9  95% = + 1.833. 
s-confidence level = 95% - 5% = 90% 
HL = 91.52, fiu = 100.70 
Conf | 91.5 <M< 100.7 } =90% 

4. For C = 5%, 95% and v = 9 
(X2A0 9 5% = 0-3694, 
(X2/*0 9, 95% =1-8799. 
s-confidence level = 95% - 5% = 90% 
oL =5.78 13.03 
Conf  { 5.8 <a< 13.0 } =90% 

There are no data outside the range of 85.8 to 
107.7. Therefore, it is difficult to guess what 
the population is like out there. 

The true mean is not known too well, 
within about 9% (at 90% s-confidence), and 
the true standard deviation is only known 
within a factor of about 2 (at 90% s-confi- 
dence). Any estimates more certain than 
those must come from other knowledge—they 
cannot come from the data. Be very careful 
not to use the point estimates and blithely 
forget all the uncertainty. For example, sup- 
pose someone wants to know the value of x 
such that only 1% of the population lies 
below it. One way to get an idea about an 
answer is to take the 2 worst cases, "^ = nL 

and a = ou", and "/x = ixu and a = aL " and 
see what the two 1% values come out to be if 
the distribution were s-normal. The number 
of standard deviations corresponding to the 
lower 1% point is - 2.33. Therefore xx%L = 
61.2, xl%u = 87.2. We don't know any 
s-confidence level for this range, but it gives 

us an idea anyway. However, we don't really 
know that the distribution is s-normal down 
that low, there might be 7% defectives down 
at about 30 for all we know. If that xx % value 
is important to know, we have to get more 
knowledge from somewhere, or admit that 
we're just guessing. 

The detail in this discussion has been to 
show that making the calculations is straight- 
forward, but getting some understanding is 
difficult. 

In this example, the data were selected 
randomly from a s-normal distribution with 
mean 100 and standard deviation 10; the 
lower 1% point was 76.7. 

5-6   PARAMETER ESTIMATION, CEN- 
SORED SAMPLES 

Analytic estimation of the parameters is 
difficult when the samples are censored. The 
method of maximum likelihood often is used, 
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in such cases, but the equations are very 
complicated, especially for the covariance 
matrix of the estimators. Analytic techniques 
that do not provide a measure of the uncer- 
tainty can be very misleading because the 
uncertainties are usually much greater than 
for uncensored samples. Graphical estimation 

is a reasonably good method and can give 
some idea of the uncertainty. 

A statistician ought to be consulted for 
analytic techniques and the meaning of their 
results. Ref. 4 might be of some help. 

REFERENCES 

1. E. S. Pearson and H. O. Hartley, Bio- 
metrika Tables for Statisticians, Vol. I, 
Cambridge Univ. Press, 1956. 

2. A. Hald, Statistical Tables and Formulas, 
John Wiley & Sons, 1952. 

3. Abramowitz and Stegun, Eds., Handbook 

of Mathematical Functions, AM555, NBS, 
USGPO, June 1964 with subsequent print- 
ings. 

4. Sarhan and Greenberg, Contributions to 
Order Statistics, John Wiley & Sons, NY, 
1962. 

5-15/5-16 



AMCP 706-200 

CHAPTER 6 

PROBABILITY DISTRIBUTIONS DERIVED FROM THE 
GAUSSIAN DISTRIBUTION 

6-0 LIST OF SYMBOLS 

C = s-Confidence 

C, L, U = subscripts that imply a s-confi- 
dence level; C is general, L is 
lower, U is upper. 

Cdf = Cumulative distribution func- 
tion 

CMj {   )        - z'th central moment 

Conf {   }      = i-Confidence level 

csn = base   name  for  chi-square/nu 
distribution 

csq = base name for chi-square dis- 
tribution 

CV { } = coefficient of variation: 
StDv{   }/E{   } 

E{   } = 5-Expected value 

.../ = suffix on base name, implies 
the Cdf 

F = F statistic 

...fc = suffix on base name, implies 
the   complement of the Cdf 
(i.e., the Sf) 

fis 

gau 

= base name for Fisher-Snedecor 
distribution 

= base name for standard s-nor- 
mal distribution 

Mt{   ) = z'th moment about the origin 

NCMt {   } = normalized   z'th   central   mo- 
ment:  CMj {   }/[StDv {     }]'' 

Pdf = probability density function 

pmf = probability mass function 

Pr |    } = Probability 

PrD = Probability distribution 

R = 5-Reliability 

s = s statistic 

s- = denotes   statistical   definition 

Sf = Survivor function 

StDv {    } = standard deviation 

stu 

t 

Var 

;•},(•;•) 

= base name for Student's t dis- 
tribution 

= t statistic 

= variance 

= standard s-normal variate 

= degrees of freedom (also used 
with subscripts) 

= scale  parameter  for s-normal 
distribution 

= the fixed parameters are listed 
to the right of the semicolon, 
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the random variable is listed to 
the left of the semicolon 

= the complement, e.g., 0 s l - 
0 where 0 is any probability 

6-1  INTRODUCTION 

These PrD's are rarely if ever fitted to 
experimental data. They are useful because 
some estimators for other PrD's have these 
PrD's. The x2 and x2 /» distributions are 
related to the Poisson and exponential distri- 
butions, in addition to the Gaussian distribu- 
tion. Failure rates are virtually nevef used 
with these distributions; so they are not given. 
They could be readily (although tediously) 
calculated. 

For many reliability purposes, the x2 /" 
distribution is more useful than the x2 distri- 
bution. 

6-2 CHI-SQUARE (x2) DISTRIBUTION 

The  base  name csq is given to the x2 

distribution  (for  chi-square).  The  suffix / 
implies the Cdf, and the suffix fc implies the 
Sf (complement of the Cdf). 

The sum of the squares of v ^-independent 
standard j-normal variates is a x2 variate with 
v degrees of freedom. In reliability work, the x2 

distribution itself is rarely needed; it is virtually 
always the x2 \v distribution that is desired. 

6-2.1  FORMULAS 

v =» degrees of freedom, v > 0 

X2 = random variable, x2 £ 0 

Pdf{x%\v) «c(x2)"/2-llexp(-x2/2) 

(6-1) 

ca2"/2[r0V2)]-1 

Cdf{x2;u) =csqf(X
2;v) 

Sfix*!») mcsqfc(x*;v) 

E{x3;v} 'v 

StDv{x2;*'} «V2T 

CV{X
2;»} -v^ 

CM3{x
l\v) =8»> 

NCMiix1;»} =^7^ 

(6-2) 

(6-3) 

mode{x2;i'} 
[v- 2, for v> 2 

'0,       otherwise 

median (x2; v) * v - 0.6 

Fig. 6-1 shows some curves of the pdf. 

It  is convenient occasionally   to define 
the Co?/and 5/for J> = 0. 

«<?/(x2;0)=l,   for x2 > 0 (6-4a) 

csqfc(x2; 0) ■ 0, for x2 >■ 0 (6-4b) 

csqf(0\ 0) ■ 0, csqfc(0; 0) ■ 1 (6-4c) 

Some approximations for x2 in terms of the 
standard s-normal variate z are 

for v -* «  ZQ % (X^ u _ V)ismr       (6-5) 

for **> 100, zQ »SlxYv -^2TH   (6.6) 
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for »> 20, zQ * [(x2
Q,J»)U3 

- (■ - i)]/M 
(6-7) 

where gaufc(zQ ) = Q, csqfc (XQ, v:v) = Q 

6-2.2 TABLES 

Calculating the pdf is straightforward but 
tedious. It is rarely used and rarely tabulated. 
The pdf is shown in Fig. 6-1. Table 6-1 gives 
the percentiles of the chi-square Cdf. Other 
good references for the Cdf are Ref. 1 (Tables 
7, 8, and Chap. 3) and Ref. 2 (Tables 26.7, 
26.8, and Sec. 26.4). Many statistical/quality- 
control texts give partial tables of the chi- 
square distribution. 

Eq. 6-8 is quite good, even for small values 
of »; it is the inverse of Eq. 6-7. 

(6-8) 

where 

gaufc (zQ) = Q, csqfc (x2
Qi v;v) = Q 

Eqs. 6-7 and 6-8 reproduce the{Cc?/ x2 ~>v} 
quite well for values of the Cdf as low as \/v2. 
Very roughly, the relative error of a tail area 
of \jv2 is less than \jv2. For v = 5, Eq. 6-8 
gives the following results: 

relative error 
Q csqfc(x2Qt v;v) 

0.00092 

in tail area 

0.001 -0.08 
0.01 0.00990 -0.01 
1 -o.i 1 - 0.1000 0.0 
1 - 0.05 1 - 0.0487 -0.026 
1 - 0.01 1 - 0.008 -0.20 

6-3 CHI-SQUARE/NU    (X
2lv)    DISTRIBU- 

TION 

The base name csn is given to the x2 /" 
distribution (for chi-square/nu). The suffix / 
implies the Cdf, and the suffix fc implies the 
Sf (complement of the Cdf). 

The average time-to-failure in a sample with 
r failures from the exponential distribution 
has the x2 /" distribution with v = 2r; see 
Chapter 7. The sum of the pmfs (rth term to 
oo) from a Poisson distribution has a x2 lv 
distribution with v = 2r\ see Chapter 4. The 
ratio s2 /a2 has a x1 lv distribution; see Chap- 
ter 5. 

6-3.1   FORMULAS 

v = degrees of freedom, v > 0 

X2/v = random variable, (x2/*0>0 

pdf{x2lv;v}=c(x2/vyl2-lexp[-%(x2lv)] 

c^(u/2Vl2ir{ul2)rl (6-8) 

Cdf{x2lv;v) =csnf(x2/v;v) (6-9) 

Sf{x2lv;v) =csnfc(x2/v;v) (6-10) 

E{x2lv;v} = \ 

StDv^x2/^} = SZJ7 

CV{x2lv;v} =s/2fV 

CM3{x
2lv;v) =S/v2 

NCM3{x
2/v;u} =^W 

l 1 - 21»,   for v > 2 
mode{x2/f;i'} =*< n t. { 0, otherwise 
median{x2/»;v} * l - 0.6/1; 
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18 20 

CHISQUARE, x1 

(A)   FORDEGREES-OF-FREEDOMv = 1,2,3,5, lOIFORi^ 1, THEpdf- - AS x" -» 0+.) 

0.105 

0.090 

0.075 

0.0601 

0.045 

0.030 

0.015 

V= 10 

0 15 30 45 

CHISQUARE, x2 

(B)  FOR DEGREES-OF-FREEDOMK= 10,20,30,50, 100 (FOR LARGE v. THE pdf IS REASONABLY 

SYMMETRICAL ABOUT xJ = v - 2.) 

Figure 6-1. Chi-square Distribution, pdf 
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TABLE 6-1 

PERCENTILES OF THE CHI-SQUARE (x2) DISTRIBUTION 
(ADAPTED FROM Ref. 3) 

csqf <x2;e)= Cdf   x2-'" 
The body of the table gives the values of X/> v 

such that csqf (\2 p „,' v) = P. 

005 »5 
I'KOIiAMLlTY   IN   l'EB   CENT 

in 25 50 IOO 300 4OO 

I ■o' 393 ■u> 157 ■' ' 393 ■"' '57 ■OJ982 ■0" 39:1 ■0158 ■0(42 -148 •275 
2 ■11" loo ■0-200 ■01.10 ■021.1 ■050b ■'03 ■211 ■446 713 1 02 

3 0153 ■024.1 ■0717 ■IIS ■210 352 ■584 1 00 142 187 

4 ■,.l,.i4 ■O.Ji.X ■207 ■207 ■4^4 711 roi'j 1 (,5 219 275 

5 ■15« -21" ■412 ■534 ■8jl 1 'S H.l 2 34 3 00 366 

6 ■200 -.(Si ■070 ■x-, I 24 1-04 2-20 3-i>7 3»3 457 
y ■4\5 ■ vjS ■OSij I-2-I 10,, 217 2x3 3«2 4-67 549 

« 7'" ■\57 1 34 I-OS 2-18 273 349 459 5 53 642 

9 ■972 1 '5 I 73 2-uil -2-70 333 4'7 5 3« 9-39 736 
10 I   21. 1-4S 210 25O 3-25 394 487 (>-It( 727 8-30 

n 1 59 I S3 2 0., .SI'S 3*2 457 5 5« 6-99 815 924 

a '93 2-21 3"7 3-57 4 40 523 b-jo 781 903 10-2 

u 2 31 2-02 3 57 4 " 501 5-89 704 S-63 993 III 

M 270 3"4 4-07 4(,0 5 "3 "57 7"79 9'47 io-8 12 1 

15 3'11 3-1« 4-I..1 5 23 (1-2(1 7 20 «55 iij-3 11-7 130 

if. 3 54 394 5M 5-8i 6-91 7-9'' 931 I 1-2 12-6 I40 

17 3 0« 442 5-7o (.41 7 5" 8-07 10 1 I20 '3-5 I4-9 

IS 1 44 490 0-20 7-01 82j 9 39 109 12-9 '44 '5-9 

'9 4-1.11 54' OS., 7''3 8-91 10 1 "7 '37 '5-4 16-9 

20 3 4" 5>)2 7 43 8-20 959 109 '2-4 I4O io-3 17-8 

21 59" 9 15 So., 8-qo ii.-j 11 l. 
^■^ '54 17-2 18-8 

22 (..40 h 98 .-.1,4 9-54 1 in 123 140 'I'3 181 '97 

23 002 75 i 9 20 lo-2 "7 ■i ' 14-8 172 19-0 207 

24 7-45' h-o.S (j-Si, IO9 '2-4 13« '5-7 181 '99 217 

25 7-99 S-di 10 S "■5 131 itl, K.-5 18-9 20-g 226 

20 «54 0-22 112 12-2 IJ-S '54 17-3 iq-8 21-8 236 

-7 .) i.i) I|8o 11 8 12-0 I|b 10-2 18-1 20-7 22-7 245 
28 0 00 iu-4 12 S I > 0 15 3 I'll) 18 9 21 (1 23 b 255 
2C) 102 11 0 I.i  I if 3 lli-u 177 19-8 225 ■241, 20-5 
30 Io-8 III. '3-3 130 lb« 18-5 20-0 2.) 4 255 274 

31 114 12 2 '4-5 '57 '75 '9-3 2'4 24-3 264 284 

32 120 US 151 10-4 183 2 u ■ 1 ^■i 25' 274 294 
33 12 0 '3 4 '5'« 17 1 190 209 2.1-1 2b 0 28-3 303 
34 13-2 It ' ill-5 17S 19 8 21 7 240 2(>-9 292 3' 3 
35 13s '47 '?■-' '«5 20I, 22-5 24-8 27-8 30-2 32-3 

36 ■4 4 '53 17 0 10 2 2I-.1 -M 256 287 311 333 
37 i.S 0 llii. IS 0 2.1 u 22  I 24 1 2l)-5 29I) 321 34-2 
3« 150 10 0 19-3 20-7 22-q 249 273 30-5 33<> 35-2 

39 lO-.i '7 3 20 ,1 21-4 237 25 7 28 2 3' 4 339 39-2 
40 ii.-.j '7 9 207 

-'-■- 
24 '4 20-5 21J  I .U 3 349 37' 

4i '7 5 iXf, 21 4 2 2 0 25-2 273 299 33 3 35-« 381 

42 1«; '9 2 221 23 7 20-11 -28-1 jo-8 34-2 39-8 39' 
43 188 11) u 21 1, 24 4 2(. 8 21) O 31(1 35 1 377 400 

44 '9 5 JII-(I 2 1 0 25  1 270 29 8 32 5 3O0 386 4IÜ 
45 201 2i-3 24 3 259 284 jo-6 334 39-9 39-6 42 0 

46 20-8 21 9 25 (, 20 7 29 2 3' 4 34 2 37-8 4" 5 43-0 
47 21-5 22 1. 25 X 27-t 30 0 323 351 3«7 4' 5 439 
4« 221 ^S 3 20 5 2^ 2 jo 8 33'1 359 39-9 42 4 449 
49 22-8 2-4-1. 27  2 289 3' ■'' 33 9 .,(,8 405 434 459 
50 23 5 247 2* 0 29-7 32'4 34-8 37 7 41-4 44 3 46-9 

Example: csqf (4.40; 12)  = 2.5% 

Approximate formula: x2-.     * v       1 —— + Z-n(—\ Q- " I '     9K \9V/      J 

where: gaufc UQ) = Q.csqfc (XQ Z. V) = Q 

Courtesy of John Wiley & Sons, Inc., publishers 
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TABLE 6-1 (Continued) 

500 600 700 800 
PROBABILITY IN PER CENT 

goo 95 °        97'.')        99° 99'5        999 9995 

•455 708 1 07 164 271 

1 39 i«3 241 3 22 4-ÜI 

2'37 295 3<>7 4<>4 (1-2.1 

336 4»4 48S 5 99 778 
435 5 13 606 729 9 24 

5 35 621 7'23 856 !()() 
635 728 838 9 80 I2 0 

7'34 835 952 u 0 '34 
«34 9'4i 1117 122 147 
9'34 105 II 8 I34 l()-0 

I'M i'5 129 I4-(, 173 
n 3 12 (1 141. 15 -8 18-5 

123 1 .if. 151 17-11 19-8 

133 147 1(1 2 18-2 2I-I 

143 '5 7 173 ■9-3 **} 

I5'3 iG-K 18-4 2"5 235 
16-3 178 195 21 (1 248 

I7'3 18 C) Jll-I» 22-8 2(l-(i 

1K3 199 217 239 27 2 

193 2IU 22 8 25-O 284 

211-3 221) 239 2(1-2 29-d 

21-3 2J'0 24 9 273 3,18 

22J 24  I 2(lll 28-4 32 » 

233 25  I 271 296 .U-z 
24'3 26l 28'2 3« 7 344 

25 3 27-2 292 3i8 35'' 
2U'3 ?8-2 3»3 329 _;(,-7 

273 292 31 4 3|0 37-9 
2«3 30-3 32 ■) 35-1 39 1 
293 313 3S5 3<>3 4»3 

3»3 3^i 34 (J 37 4 41-4 
31 3 334 357 38-5 42 (1 

32-3 344 3<>7 39'' 437 
333 35 4 3/8 4»7 449 
343 365 389 41-8 46-1 

35'3 375 39'9 429 47'2 
36-3 3«5 41 -o 44» 48-4 

37'3 39° 420 45 1 495 
383 406 43 1 46 2 5"7 
393 41-6 442 47 3 51-8 

403 427 45'2 484 529 
413 437 4f>'3 495 54'i 
423 447 473 505 55 2 

43'3 457 48-4 5i0 5»4 
443 468 495 527 57 5 

45'3 478 505 538 58-6 

46'3 488 516 54-9 598 
473 49-8 526 56-0 609 

4^ 3 509 537 57 1 62 -0 

49'3 51-9 547 58-2 63-2 

384 5112 6(13 7-88 io-8 

5 99 7 38 9-21 Ki-6 i.J-8 
781 9'35 113 128 16-3 

949 HI 133 149 18-5 
ill 12-8 151 16-7 20-5 

120 '44 16-8 18-5 22-5 

141 16-11 18-5 2(1-3 243 
•5 5 '75 20 1 220 26-1 
it) 9 19-0 21-7 23-6 27-9 

■8-3 20-5 23 2 252 296 

197 219 247 2(1-8 31 3 
210 2.\\i 2(1 2 28-3 329 
224 247 27 7 298 345 
237 2(1-1 291 313 jli-i 

250 275 306 32-8 377 

2(13 288 32-0 343 393 
27(1 30-2 334 35 7 408 
289 31-5 34-8 37'2 42-3 
30 1 329 3112 386 438 

3'4 34'2 376 4(1(1 45'3 

327 35 5 389 414 468 

339 3<>8 4''-3 42-8 4«'3 
35 2 38-1 4.(1 442 497 
3<>4 394 43 ■" 45«.' 512 

377 4u-(i 443 469 526 

38-9 41-9 45 11 48-3 54-5 
4U-1 43 2 47» 49» 555 
41-3 445 483 51-0 5"'9 
426 457 49(1 523 58'3 
43-8 47'" 5»9 537 59 7 

45» 482 522 55-0 611 
4(1-2 49'5 535 56-3 62-5 

474 5<>7 54-8 57» 639 
48-(> 5 20 561 59° 652 
498 53'2 573 60 3 66-6 

510 54'4 58-6 f.i-6 (180 

522 557 599 629 6<)-3 
534 5»'9 bi-2 642 707 

54» 581 62-4 65 5 72-1 

55-8 59'3 »37 66-8 734 

5»9 fxi-6 65 0 68-1 747 
58-. 6i-8 6(1-2 693 761 

59'3 63-0 67-5 70-6 77'4 
(10-5 64-2 687 719 78-7 
61-7 65 4 700 73'2 80 1 

(12 8 66 6 71-2 744 814 
64-0 678 72-4 757 827 

65-2 690 737 77-0 840 

06-3 702 749 782 85 4 
»7-5 71-4 762 79 5 867 

121 I 

'52 2 

177 3 
20-0 4 
221 5 

24-1 6 
2Ö-0 7 
27'9 8 

297 9 
31-4 10 

33 1 11 

34-8 12 

36-5 13 
381 M 
397 15 

41-3 16 
429 '7 
44'4 18 
460 19 
47'5 20 

490 21 

5»5 22 

520 23 
53'5 24 
549 25 

5»4 26 

579 27 
593 28 
6(17 29 
622 30 

636 31 
65 0 32 
66-4 33 
678 34 
692 35 

706 36 
720 37 
734 38 

747 39 
76-1 40 

77'5 41 
788 42 
80-2 43 
815 44 
82-9 45 

84-2 46 
856 47 
869 48 
88-2 49 
89-6 50 
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Fig. 6-2 shows some curves of the pdf. 

6-3.2 TABLES 

Calculating the pdf is straightforward but 
tedious. It is rarely used and almost never 
tabulated. It is shown in Fig. 6-2. 

Table 6-2 gives some percentiles of the x1 lv 
Cdf. Tables of the y} lv distribution are 
handy, but uncommon. 

An approximation for xJ /" in terms of the 
standard s-normal variate z is 

For v> 20, zQ * [(x
2/>')1/3 

-0-£)]/v£<6-7> 
Eq. 6-11 is the inverse of Eq. 6-7 and is quite 
good. See Eq. 6-8 et seq. 

^/v)ß,,-[l-^+2c(^)m]3(6-ll) 
where 

gaufc{zQ) = Q, csnfc((xJlv)Q v\v)*Q 

6-4 STUDENT'S f-DISTRIBUTION 

The base name stu is given to the t 
distribution (for student). The suffix / implies 
the Cdf, and the suffix fc implies the Sf 
(complement of the Cdf). 

The ratio of a standard j-normal variate to 
the square-root of a chi-square/nu variate has 
the r distribution. It occurs most frequently 
with the j-normal distribution where both the 
mean and standard deviation of a 5-normal 
distribution are to be estimated from the 
sample data: Student was used as a pen name 
by W. S. Gösset in 1908 to publish his 
derivation of the t distribution. See Chapter 5 
for examples of the r distribution. The distri- 
bution is symmetrical about the origin. 

6-4.1  FORMULAS 

v      ■ degrees of freedom, v > 0 

t      - random variable, it can take any value. 

pdf{t\v) -c(l + r2/cr ("+ 1)/2 

cs[VWr(W2+l/2)r(W2)]-1 

= 2v[7r^r(^)]-1 (6-12) 

(6-14) 

Cdf{t\v) -stuf{t; v) (6-13) 

Sf{f,u)"stufc(f>v) 

E{t;v) =0 

(V»V(p-2), for v > 2 
StDv{f;i»} 

CMs{t;i>) =0 

NCMi{t;v)=0 

otherwise 

NCM 
3 + 6/(f - 4), for v > 4 

otherwise 

median{t; v) - 0 

mode{r;i'}    ■ 0 

Fig. 6-3 shows some curves of the pdf. They 
are quite similar to the Gaussian pdf. For 
v -*■ o°, the r-distribution becomes the 
Gaussian distribution. 

6-4.2 TABLES 

The pdf rarely is used and almost never 
tabulated. If needed, it can be calculated 
(tediously) from Eq. 6-12. Table 6-3 gives the 
percentiles of the r-distribution. Tables for 
the r-distribution are quite common; see, for 
example Ref. 1 (Tables 9, 10, 12, and Chapter 
5). 
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X 

0 0.40 0.80 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 

CHISQUARE/NU.xVv 

(A)   FOR DEGREES-OF-FREEDOMv = 1,2,3,5, 10 (FOR LARGE v, THE pdf ^ - AS x,/y-+0+.) 

3.5 - 

3.0 - u= 100 

2.5 - 

/    50       \ 
2.0 - 

/    30       \ \ 

1.5 - 
if    20          N.   \\ 

1.0 - 

// / / 

7/10                  "x^v 

0.5 - 

0- T   ■■■■            1 -    r       T            -r -r               I     "   "      i            —i 
1.2 14 1.6 1.8 2.0 

CHISQUARE/NU,x'/l> 

(B)    FOR DEGREES-OF-FREEDOM e » 10,20,30,50, 100 (FOR LARGE v. THE pdf IS REASONABLY 

SYMMETRICAL ABOUT x*/v = 1-2/v.) 

Figure 6-2.  Chi-square/Degrees-of-freedom Distribution, pdf 
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TABLE 6-2 

PERCENTILES OF THE CHI-SQUARE/NU (x2 M DISTRIBUTION 
(ADAPTED FROM Ref. 3) 

csnfix2/v,v) =Cdf {x2/";"/ 
The body of the table gives the value of 

<x2M P,v such that csnf [{\ Iv) p v ;t> } = /». 

-.   1> . 
PuOIIAnil.ITY IN   PKI1   CEN1 PROBABILITY IN   PER CENT 

005 

•0000 

01 

■0000 

o-S Id 

■0002 

25 

■OOIO 

5" 

»039 

95-0 97 \5 99-0 

6I.35» 

995 

7-8790 

999 

108280 

9995 

I 384"' 5-0240 I2-IIÖÜ 

2 ■01 '»5 ■0010 ■D.,5» ■O Ion "25 1 ■os 15 2-9955 J-l)8.,.) 4-6050 52')85 69080 760IO 

3     ! o»5' ■0081 ■»2311 ■i.jaj ■0720 "73 26050 3111,0 37«'7 4-2793 54220 5 9100 

4 •016» ■0227 ■05 iS ■0742 ■I2IU ■1778 2-372'' 2-7.15« 33192 37'5» 46168 49995 
5 ■0 ! H> ■0420 ,,824 ! I.,8 I(,l,2 ■221)1) 22140 2  SOI,! 3-0172 3-.1500 4-1030 44210 

6 0499 ■(»US ■ 1 1 -' 7 ■'4V! ■20O2 •2725 2-0987 24082 2-8,,20 3»9'3 3 743» 40172 
, ■0693 ■0854 ■I4I.1 ■1770 24I4 ■J09I) 2 009(1 2-2870 2639.! 2 891,4 3"474» 37169 

8 ■0888 ■1071 ■ll.S, 2058 ■272.S 34"' '■93«4 J-I9III 2 SI12 27444 32656 34835 
9 ■u„Su ■I 281 l„j8 ■2 120 - ;ouo ■3»94 '■«799 21 '37 2'4"73 2-6210 3»974 32962 

10 ■1=1.5 ■'479 2 ISO •255s ■3247 ■I940 i«3"7 2-04«3 2-3209 2-5188 2-9588 3-I4I9 

11 ■1443 ■i()07 ■2.(01. ■2775 -34<>9 4'59 17880 I9927 22477 2-4325 28422 30124 

12 •l()I2 ■1845 ■2502 2.I7I, ..51,70 ■4355 '7522 '9447 2-1848 235«3 27424 2-9018 

13 1773 ■201 j ■2742 3'5» ■3«53 •4532 17202 I 9028 2-1 298 2 2938 2-6560 2-8060 

14 I926 ■2172 ■2fjll ■332O 4021 4094 14,918 I-8(,s(, 2-oSlj 2-2371 2-5802 27221 

15 2072 ■2J22 ■301,7 ■34«'> ■4175 ■48) 1 1 (,',(,4 I-8.12S 2-O.J8S 2-18O7 2 5131 26479 

id 2210 ■24I.4 •3214 ■3»32 ■43 'S ■497» '''435 1-8028 2-00O0 21417 2 4532 25818 

17 •2341 ■2S9« 315' ■37''9 ■4449 ■511,1 I()22>S '7759 I-9l,52 21011 2 3994 25223 
IS ■24''" 'J7-'5 ■.',1s' ■3«97 4573 ■5217 I-00.18 '7514 I 933'' 2-0642 2'35»7 2-4686 

«J 25«5 ■2X41, ■ jl„,2 ■4017 41,88 •5325 1-58(I5 1-7291 1-9048 20300 2-3063 24196 

20 ■2649 ■-"/'■' '37'7 ■413" ■479" ■5121. 1 57»5 17085 1-8783 1 9998 22658 2.3749 

21 ■2S0S 307" ■3S2I, 42.17 '4«97 ■5520 ■■555« I -f.su 5 '■8539 1 9715 22284 2-3338 
-22 •2QII \j'74 ■102«) ■1337 ■4092 ■5608 1 542» 1-1.719 l8jl.) '9453 21940 2-2960 

■23 '3UI» 3273 ■402I, -(433 •5082 ■5'.92 1 5292 1-6555 I-8lo.l 19209 2-1(>21 2-2609 

24 ■Ji»5 331»! •41"! 4V.1 5 "'7 577» 1 5'73 1-0402 1790S 1 8982 2  1325 22283 

25 ■3'9'> 341,0 4208 ■41,10 5-'48 •5«44 1 Sol, 1 11,258 1-^726 .'«771 2  1048 2 '979 

26 •32^4 ■3547 ■4292 ■469.1 ■5325 ■5015 1-495'' I (,124 1-7555 '■«573 2-0789 2 1695 

27 .\.V>« \\<>.li ■4173 ■47/0 5397 ■5982 I 48.57 15(198 ■7',»4 1-8387 20547 2 1429 
28 3449 37" ||So )-s45 ■54'7 ■O04I, i'47''3 ' 5S79 17242 1 8212 21,.1I9 2 "79 

29 ■35-'7 ■37«« 1 5-N 4010 ■5533 ■l,Ii,ii '■4"75 1-57i.l1 1 7,'90 1-8047 2-0104 2 »943 
3" ■J6OI l«!'.! I591' ■4084 5597 •1,104 1-4591 1 51,1», 1-O9O4 17891 I-991.I 2 0720 

3' 3'>74 3934 ■41,1,4 ■5050 ■5"5« 1,220 '■45" 1'5559 1 4,836 17743 1-9709 20510 

32 ■37 »3 ■4""3 ■4729 ■5 "3 ■57"' ■O272 1 44.ll) 1-541,2 1-1,714 17602 19527 20311 

33 ■jSn ■4070 ■4702 ■5'74- ■5772 <W i-4.il ,4 1 537' I 1,599 174(19 1-9555 2-OI22 

34 M«?'' ■4'34 (853 52 12 ■5«2.5 ('372 14295 1-5284 IO489 17342 1 9190 I-9942 
35 3939 ■4197 4912 ■3288 ■5«77 ■1,419 1 4229 1-5201 1-1,383 1-7221 1 9"34 I977I 

3& ■4000 ■4257 441,9 ■5342 ■5927 (.464 1 -41 (if) 1-5121 1 -628.J 1-711,6 18885 I-9O08 

37 ■4"59 •4315 ■5023 ■5395 5975 ■9507 I -_| ici(> '■501s 1 1,187 1-6995 1-8742 1-9452 
3« ■4117 437' ■5»7" 5445 1.021 ■''54« 1-4048 1-497-' 1 "''95 I-08()O I-80OI, 1 93»3 
39 ■4'73 •442(1 ■5127 "5494 ■CK)()5 ■0S88 ' 3993 ' 49"3 1O007 1-0789 I 8476 1-9160 
40 ■4220 4479 5177 554' ■6108 (,(,27 '391» 1 ■4830 1 5923 1(1692 1-8350 1 9024 

41 •4279 4530 522S -5587 6150 ■l,(,l>5 1 -3888 '■477' 1 5841 I 6598 1-8230 1-8892 
42 433» ■45«» ■5271 ■5»3' ■6190 (,701 ' 3«39 1-4709 1 57('3 I-6509 1-8115 18767 

43 ■4380 ■41,29 53"' ■5»74 •6229 ■(,736 13792 141,49 1-5688 I (>422 I 8004 1 8(146 

44 •442« ■41,7(1 ■53'»' ■57'5 •0267 "77» 1374» 1-4591 1-5616 i'>339 17898 1-8529 
45 •4475 ■4722 ■54»2 ■575'' 6304 ■68oj 13701 ''453» '■554'' 1-1.259 1 7795 18417 

46 •4520 '47<>7 5444 5795 »339 •»«35 1-3659 1-4482 1-547« 1 6182 17696 1 8309 

47 4565 ■4811 ■54«4 ■5S33 ''374 ■6866 1 3617 1-443» ' 5413 1-6107 17600 1 8204 
4« ■4(109 ■4«53 ■5523 5870 ■6407 6895 '■3577 14.180 1 5351 16035 17508 1-8104 
49 ■4»5' ■4»94 55'" 5906 •6440 ■0924 '■3539 ' 433' 1 529» 1-5966 17418 i-8006 

50 •4692 4935 ■559« ■59(1 •6471 ''953 1 35»' .1-4284 15231 15898 17332 17912 

Example: csnr" (0.3670; 12) = 2.5% \      1/2 -■  3 

Ap proximate formula: x2/") r» •..   ~" h- I-  + *n   ( 1 -^ 1 
9v 

where: gaufc  (z) = Q; csnfc    (\2lv)Q  p; 

calculated from Eq. 6-7. 
Courtesy of John Wiley & Sons, Inc., publishers 

v '   = Q and zQ can be 
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TABLE 6-3 

PERCENTILES OF THE t DISTRIBUTION 
(ADAPTED FROM Ref. 3) 

AMCP 706-200 

The body of the table gives the value of tp v such that 

Cdf   {tP.V'v} =stuf ltr.»',v) = P- 

U-p = - f/"fso% = 0 

\P PROBABILITY IN   PER   CENT 

V\ 
6o 70 

727 

80 

i'37» 

90 

3 »78 

95 

6314 

97 5 

12-71 

99 

31-82 

99 5 

63-66 

999 9995 

r ■325 318-3 6366 

2 •2S9 617 l-ofil 1886 2-920 4-303 6965 9925 2233 3'-6o 

3 ■277 584 '97« 1638 2-353 3-182 4 541 584' 10-22 1294 

4 •271 569 •941 i'533 2132 2776 3747 4-604 7'73 8-610 

5 •267 559 •920 1-476 2-015 2571 3365 4032 5-SQ3 6859 
6 •265 553 •906 I-44D 1-943 2-447 3-'43 37»7 5-208 5959 

7 •263 549 •896 1 415 1 895 2365 2 998 3 499 4785 5405 
8 •262 546 ■889 i'397 1-860 2 306 2-896 3-355 4501 5041 

9 •261 543 •883 1 383 1-833 2262 2-821 3250 4-297 4-781 

10 •260 542 •879 1372 1-812 2-228 2 764 3-169 4'44 4587 
ii ■260 54» •876 i-3»3 1796 2-20I 2718 3-106 4»25 4-437 
12 •259 539 ■873 1-351' 1 782 2 I79 2 -681 3 »55 3-93» 4318 

13 •259 53» •870 1-35» 1-771 2-160 2-6511 3-012 3-852 4221 

14 ■258 537 •868 1-345 1-761 2145 2 624 2-977 3-787 4-140 

15 •258 536 ■866 1-341 1-753 2-I3I 2-6()2 2947 3733 4 "73 
16 •258 535 ■865 1-337 1-746 2-120 2-5«3 2-921 3-686 4-» '5 

17 •257 534 ■863 1-333 1740 z-1 10 2 567 2-898 3-646 3 9'>5 
i8 ■257 534 •862 1-33» 1 734 2-IOI 2-552 2878 3-fin 3 922 

'9 ■257 533 ■861 1-328 1729 2-093 2-5.59 2-861 3579 3883 

20 '257 533 ■860 1-325 1725 2-i)S6 2-528 2845 3-552 3850 
21 ■257 532 •859 1 -3-' 3 1 721 2 080 2-518 2-811 3527 3819 
22 ■256 532 •858 1 321 1-717 2-074 2 508 2-819 35»5 3792 

23 256 532 •858 1-319 1-714 2-1)1«) 2-500 2-817 3-485 3-767 

24 ■256 531 ■857 1-318 1-711 2-064 2 492 2797 3-467 3745 

25 •256 531 ■856 1-316 1-708 2-o6o 2-485 2-787 3450 3-725 
26 •25') 531 •856 1 -315 1706 2-056 2470 2779 3 435 3707 

27 ■256 531 •855 I-3I4 '7»3 2052 2-473 2771 3-421 3-1.90 
28 ■256 53» ■855 1-313 1701 2-048 2467 2-763 3408 3<74 
29 •25O 53» •854 i-jii 1699 2-045 2462 2756 3 396 3-659 

30 •256 53» ■854 1-310 1 697 2-042 2-457 2-75» 3385 3646 
40 '255 529 ■851 i-3»3 1-684 2021 2 423 2-704 3307 3551 
50 '255 528 ■849 1-298 1-676 2009 2-4»3 2-678 3-262 3 495 
6o ■254 527 •848 1 296 1 671 2-O00 2-390 2660 3232 3460 
8o '254 527 •846 1-292 1664 I-99Ü 2-374 2-639 3 '95 3-4'5 

100 •254 526 ■845 1-290 I-660 I-984 2-365 2626 3174 3389 
200 •254 525 ■843 1-286 1-653 1-972- 2-345 2-601 3131 3339 
500 •253 525 ■842 1 283 1 648 I 965 2-334 2-586 3-106 3-310 
oo ■253 524 •842 1-282 1645 1-960 2 326 2576 3090 

0-2 

3291 

2(I-P) 80 60 40 20 10 5 2 I O-I 

stuf (2 086; 20) = 97.5% 

Courtesy of John Wiley & Sons, Inc., publishers 
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Ref. 2 (Form.26.7.8) gives the following 
approximation for large v (it is not .very good 
even for moderate v)\ 

zP M jyj, (zP has the sign of tP   ) 

(6-15) 

where gauf(zP) = /> and stuf(tP v; v) = P. Eq. 
6-15 can be inverted to give 

0>, v ~ 
1 - 

Av 

Zp 2v 

-1/2 

(/p „ has the sign of zP)    (6-16) 

As an example of the accuracy of Eqs. 6-15 
and 6-16, for v= 10, r1%> 10 -

>z1.1%. 

6-5 FISHER-SNEDECOR f DISTRIBUTION 

The base name fis is given to the F 
distribution (for Fisher-Snedecor). The suffix 
/ implies the Cdf, and the suffix fc implies the 
Sf (complement of the Cdf). 

The ratio of the squares of 2 ^-independent 
s statistics from the same s-normal distribution 
has the F distribution. It is the ratio of any 
two x2/«' variates. Fisher's original distribu- 
tion used a different function of F. Snedecor 
introduced the F variable and named it after 
Fisher. Many authors since then have given 
both men credit. 

The symbol F is not used universally for 
the random variable, but it is by far the most 
common symbol. 

6-5.1  FORMULAS 

v\ > v7   = parameters, degrees    of   freedom, 
fi, "2 > 0 

F = random variable; F> 0 

pdf{F;u1,v2} =CF"W2-1 

(6-17) 

X(v2 +Vi F)+v,F)-{vi + v^2 

c-LrW2)rW2)J !    2 

Cdf{F; v» v2} = fisfiF; vu v2) (6-18) 

Sf{F; vlt v2) = fisfdF; vlt u2) (6-19) 

The first parameter is the degrees-of-free- 
dom of the x2 \v variate in the numerator; the 
second parameter is the degrees-of-freedom of 
the x2 \v variate in the denominator. 

The F distribution has some symmetry in 
its parameters which is often used to shorten 
tables of the F distribution. 

fisfiF; vu v2) = fisfcd/F; v2, v,)      (6-20) 

v2l(v2 -2), forv2 > 2 
'{F;vl,u2} = { 

otherwise 

StDv{F; 

\ —fr art  _ otherwise 

CV{F;vuvt} >L y,(^-4) J  'fori,2>4 

■ -* oo , otherwise 

,' ["j ]3 r8(y, +v, -2)(2i-, + y,-2)1 

' -»• oo , other 
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mode{ F, vu v2 } 
Viivi -2) 
V^(p2 + 2) 

median! F l-2/(9^,)-|3 • H-2/(9^)1 

The F distribution is related to other distribu- 
tions (adapted from Ref. 2). 

fisfcit2; 1, v) = 2sfu/c(/;»»), for / > 0   (6-21) 

fisfc(F; vu u2) = Ix(v2/2, vj2) (6-22) 

x = v2 l(v2 + Vi F) 

where / is the Beta distribution (Chapter 10), 
also called Incomplete Beta Function, Ref. 2 
(Sec. 26.5). 

fisAF; v, oo) = csnf(F; v) (6-23a) 

/?5/(F- °° e) = csnfcd/F; v) (6-23b) 

6-5.2 TABLES 

The pc// is neither tabulated nor of engi- 
neering interest. Table 6-4 gives percentiles of 
the F distribution (right-hand tail area only). 
Because there are 2 parameters, the F distri- 
bution is difficult to tabulate extensively. 
Other tables are in Ref. 1 (Tables 18, 19, and 
Sec. 9) and Ref. 3 (Table VII, called the v2 

distribution). Abbreviated tables are in most 
statistics and quality control books.. 

An approximation is given in Ref. 2 (For- 
mula 26.6.15) 

where 

gaufc(zQ) = Q 

flsfc(FQVi VI;^,P2) = Q (6-24) 

c, = 2/0,)«l,for/= 1,2. 

Eq. 6-24 is reasonably good even for smaller 
values of vx, v2, at least in the region where it 
is usually used (right-hand tail area). Typical 
results are 

relative er- 
ror in tail 

vx        v2     Q,%    Q(ZQ),% area, % 

5 10     1.00     1.028 
10 5    1.00     1.18 

3 5    5.00     5.09 

2.8 

Eq. 6-24 can be inverted to give Eq. 6-25. 

Q ,V ,  ,V; 

r/l-CA l+jl-UxU,)112!3 

Ill -cj U2 J' zQ > 0 

\F^7)'Zß=0 (e = 50%) 

x[(S^)uo-U)^"]''r^0 

(6-25) 
where 

c, = 2l(9Vi) « 1 

Ui-i-ci'aKi-c,)2 > o 

The approximations Eqs. 6-24 and 6-25 re- 
duce to those for x2 \v as shown in Eq. 6-23 
and par. 6-3. 
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TABLE 6-4IA) 

F DISTRIBUTIONS (ADAPTED FROM Ref. 4) 

fisf (F; vltv2) = 99%, fisfc {F; vx. v2) =  1 % 
fisf [UF-.Vi.Vx) = 1 %, fisfc (11F; v2. vx) = 99% 
Body of the table gives the value of F. 

Degree* of Freec lom In Numerator v 1 

1 2 3 4 5 6 7 8 9 

1 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 5928.3 5981.6 6022.5 

2 98.503 99.000 99.166 99.249 99.299 99.332 99.356 99•374 99.3&p. 

3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 

4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 

5 16.258 13.274 12.060 II.392 IO.967 10.672 10.456 IO.289 IO.158 

6 13.745 10.925 9.7795 9.1483 8.7459 8.4661 8.2600 8.1016 7.9761 

7 12.246 9.5466 8.4513 7.8467 7.4604 7.1914 6.9928 6.8401 6.718& 

8 11.259 8.6491 7.5910 7.0060 6.6318 6.3707 6.1776 6.0289 5.9106 

9 10.561 8.0215 6.9919 6.4221 6.0569 5.8016 5.6129 5.4671 5.3511 

10 10.044 7.5594 6.5523 5.9943 5.6363 5.3858 5.2001 5.0567 4.9424 

> 11 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 4.8861 4.7445 4.6315 

0 12 9.3302 6.9266 5.9526 5.4119 5.0643 4.8206 4.6395 4.4994 4.3875 
4-> 

ctS 13 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 4.4410 4.3021 4.1911 
c 
•H 14 8.8616 6.5149 5.5639 5.0354 4.6950 4.4558 4.2779 4.1399 4.0297 

c 15 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 4.1415 4.0045 3.8948 
0) 
Q 16 8.5310 6.2262 5.2922 4.7726 4.4374 4.2016 4.0259 3.8896 3.7804 
c 
•H 17 8.3997 6.1121 5.1850 4.6690 4.3359 4.1015 3.9267 3.7910 3.6822 

E o 18 8.2854 6.0129 5.0919 4.5790 4.2479 4.0146 3.8406 3.7054 3.5971 
T3 
01 19 8.1850 5-9259 5.0103 4.5003 4.1708 3.9386 3.7653 3.6305 3.5225 
01 

20 8.096O 5.8489 4.9382 4.4307 4.1027 3.8714 3.6987 3.5644 3.4567 

^-1 21 8.0166 5.7804 4.8740 4.3688 4.0421 3.8117 3.6396 3.5056 3.3961 
0 

V) 
22 7.9454 5.7190 4.8166 4.3134 3.9880 3.7583 3.5867 3.4530 3.3458 

01 
01 23 7.8811 5.6637 4.7649 4.2635 3-9392 3.7102 3.5290 3.4057 3.2986 
Li 

24 7.8229 5.6136 4.7181 4.2184 3.8951 3.6667 3.4959 3.3629 3.2560 
Q 

25 7.7698 5.5680 4.6755 4.1774 3.8550 3.6272 3.4568 3.3239 3.2172 

26 7.7213 5.5263 4.6366 4.1400 3.8183 3.5911 3.4210 3.2884 3.1818 

27 7.6767 5.4881 4.0009 4.1056 3.7848 3.5580 3.3882 3.2558 3.1494 

28 7.6356 5.4529 4.5681 4.0740 3.7539 3.5276 3.3581 3.2259 3.1195 

29 7.5976 5.4205 4.5378 4.0449 3.7254 3.4995 3.3302 3.1982 3.0920 

30 7.5625 5•3904 4.5097 4.0179 3.6990 3.4735 3.3045 3.1726 3.0665 

40 7.3141 5.1785 4.3126 3.8283 3.5138 3.2910 3.1238 2.9930 2.8876 

60 7.0771 4.9774 4.1259 3.6491 3-3389 3.1187 2.9530 2.8233 2.7185 

120 6.8510 4.7865 3.9493 3.4796 3.1735 2.9559 2.7918 2.6629 2.5586 

00 6.6349 4.6052 3.7816 3.3192 3.0173 2.8020 2.6393 2.5113 2.4073 
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TABLE 6-4IA) (Continuad) 

F DISTRIBUTIONS (ADAPTED FROM  Ref. 4) 

ftsf (F;pt,v2) - m%,fisfc[F;vi,vi) -  1% 

fisfiMF.v^.i'O * :%,fisfc [MFWi.Vi) - 99% 

Body of the table gives the value of F. 

Degrees  of  Freedom  in Numerator  v. 

10 12 15 £0 24 30 1*0 60 120 

c 

•a 

K 
«- 
o 

1 

3 
l* 

5 
6 

7 
8 

9 
10 
11 
12 

13 
li* 

15 
16 

17 
18 

19 
20 
21 
22 

23 
24 

25 

26 

6055.8 

99.399 
27.229 
1U.546 

10.051 
7.8741 
6.6201 
5.8143 

5.2565 
4.8492 

4.5393 
4.2961 

4.1003 
3.9394 
3.8049 

3.6909 

3.5931 
3.5082 

3.4338 
3.3682 
3.3098 
3.2576 
3.2106 

3.1681 

3.1294 

3.0941 

3.0618 

3,032° 

VOW 

6106.3 

99.416 

27.052 
14.374 

9.8883 

7.7183 
6.4691 
5.6668 
5.1114 

4.7059 
4.3974 

4.1553 
3.9603 
3.8001 
3.6662 

3.5527 
3.4552 
3.3706 

3.2965 
3.2311 
3.1729 
3.1209 
3.0740 

3.0316 

2.9931 

2.9579 

2,9256 
2.8959 

) 2.6665 

2.BW 

6157.3 

99.432 
26.872 
14.198 

9.7222 

7.5590 

6.31H3 
5.5151 
4.9621 
4.5582 

4.2509 
4.0096 
3.8154 

3.6557 

3.5222 
3.4089 
3.3117 

3.2273 
3.1533 
3.0880 

3.0299 
2.9780 

2.9311 
2.8887 
2.8502 

2.8150 

2,7627 
2.7530 
2.7256 
2J002 

2.5216 

nil) 

6208.7 
99.449 

26.690 
14.020 

9.5527 

7.3956 

6.1554 

5.3591 
4.8080 

4.4054 

4.0990 

3.8584 

3.6646 

3.5052 

3.3719 
3.2588 

3.1615 

3.0771 

3.0031 

2.9377 
2.8796 

2.8274 

2.7805 

2.7380 

2.6993 

2,6640 

2.6316 

2.6017 

2.5742 

2.5^87 

2.3689 

2,1976 

6234.6 

99.456 

26.598 

13.929 

9.1*665 

7.3127 

6.0743 

5.2793 
4.7290 

4.3269 

4.0209 

3.7805 
3.5868 

3.4274 

3.2940 

3.1808 

3.0835 
2.9990 

2.9249 
2.8594 
2.8011 

2.7488 

2.7017 

2.6591 

2.6203 

2.5848 

2.5522 

2.5223 
2.4946 

2.4689 

2.2880 

2.1154 

6260.7 

99.466 

26.505 

13.838 

9.3793 

7.2285 

5.9921 

5.1981 

4.6486 

4.2469 

3..9411 

3.7008 

3.5070 

3.3476 

3.2141 

3.1007 

3.0032 

2.9185 
2.8442 

2.7765 
2.7200 

2.6675 
2.6202 

2.5773 

2.5383 
2.5026 

2.4699 

2,4397 
2.4118 

2,3860 

2.203* 
2.0295 

6286.8 
99.474 
26.411 

13.745 

9.2912 
7.1432 
5.9084 

5.U56 

4.5667 

4.1653 
3.8596 

3-6192 
3.4253 
3.2656 

3.1319 
3.0182 

2.9205 
8354 
7608 

6947 

6359 

5831 

5355 
2.4923 

2.4530 

2,4170 

2.3840 

2.3535 

2.3253 

2.2992 

2.1142 

1.9360 

1.7628 

6313.0 

99.483 

26.316 

13.652 

9.2020 

7.0568 

5.6326 

5.0316 

4.4831 

4.0819 
3.7761 

3.5355 

3.3413 

3.1613 
3.0471 

2.9330 

2.8348 

2.7493 
2.674? 

2.6077 
2.5484 

2.4951 
2.4471 

2.4035 

2.3637 

2.3273 

2.2938 

2.2629 
2.2344 

2.2079 

2.0194 

1.8363 

1.6557 

6339.4 

99.491 
26.221 

13.556 

9.1118 

6.9690 

5.7572 
4.9460 

4.3978 

3.9965 
3.6904 

3.4494 

3.2548 

3.0942 

2.9595 
2.8447 

2.7459 

2.6597 

2.5639 
2.5168 

2.4568 

2.4029 

2.3542 

2.3099 

2.2695 

2.2325 
2.1984 

2.1670 

2.1378 

2.1107 

1.9172 

1.7263 
1.5330 

. on 

6366.0 

99.501 

26.125 

13.463 
9.0204 

6.8801 

5.6495 

4,8588 

4.3105 
3.9090 

3.6025 
3.3608 

3.1654 

3.0040 
2.8684 

2.7528 

2.6530 
2.5660 

2.4893 
2.4212 

2.3603 

2.3055 

2.2559 
2.2107 
2.1694 

2.1315 
2.0965 
2.0642 

2.0342 
£.0062 

1.8047 
1.6006 

1.3805 
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TABLE 6-4(B) 

F DISTRIBUTION   (ADAPTED FROM Ref. 4) 

fisf(F;Vi,v2)  = Ql.S%,fisfc(F;vx,v2) = 2.5% 
fisf{1/F;v2.v]) = 2.5%.fisfc{UF;v2,vl) = 97.5% 
Body of the table gives the value of F. 

DegreeB  of Freedom  In Numerator  v^ 

7 

O 

1 

2 

3 
4 

5 
6 

7 
8 

9 
10 
11 
12 

13 
14 

15 
16 

17 
16 

19 
20 
21 
22 

23 
24 

25 
26 

27 
28 
29 
30 

647.79 
38.506 

17.443 
12.218 

10.007 
8.8131 

8.0727 
7.5709 

7.2093 
6.9367 
6.7241 

6.5538 

6.4143 

6.2979 
6.1995 
6.1151 
6.0420 

5.978I 
5.9216 

5.8715 
5.8266 

5.7863 
5-7498 

5.7167 
5.6864 
5.6586 

5.6331 
5•6096 
5.5878 

5.5675 

799.50 
39.000 
16.044 

10.649 
8.4336 

7.2598 

6.5415 
6.0595 
5.7147 
5.4564 

5.2559 
5.0959 

4.9653 
4.8567 
4.7650 

4.6867 
4.6189 
4.5597 

4.5075 
4.4613 
4.4199 
4.3828 
4.3492 

4.3187 
4.29C9 

4.2555 
4.2421 

4.2205 

4.2006 

4.1821 

864.16 

39.165 

15.439 

9.9792 
7.7636 
6.5988 

5.8898 
5.4l60 
5.0781 
4.8256 
4.6300 
4.4742 

4.3472 
4.2417 
4.1528 
4.0768 
4.0112 

3-9539 
3.9034 

3.8587 
3.8188 

3.7829 

3.7505 

3-7211 

3.6943 

3.6697 
3.6472 

3.6264 

3.6072 

3.58Q4 

899.58 
39.248 

15.101 

9.6045 

7.3879 
6.2272 
5.5226 
5.0526 
4.7181 

4.4683 

4.2751 
4.1212 

3.9959 
3.8919 
3.8043 
3.7294 
3.6648 

3.6083 

3-5587 

3.5147 
3.4754 
3.4401 

3.4083 

3.3794 

3.3530 

3.3289 

3.3067 

3.2863 

3.2674 

921.85 
39.298 

14.885 
9.3645 
7.1464 

5.9876 

5.2852 

4.8173 
4.4844 

4.2361 
4.0440 

3.8911 
3.7667 
3.6634 
3.5764 

3.5021 

3.4379 
3.3820 

3.3327 

3.2891 
3.2501 

3.2151 

3.1835 

3.1287 
3.1048 
3.0828 

3.0625 

3.0438 

937.11 

39.331 

14.735 
9.1973 
6.9777 
5.8197 
5.1186 

4.6517 

4.3197 
4.0721 

3.8807 
3.7283 

3.6043 
3.5014 

3.4147 
3.3406 

3.2767 
3.2209 
3.1718 

3.1283 

3.0895 
3.0546 

3.0232 

2.9946 

2.9685 

2.9447 

2.9228 

2.9027 

I 

948.22 

39.355 
14.624 

9.0741 

6.8531 

5.6955 

4.9949 
4.5286 

4.1971 
3.9498 

3.7586 

3.6065 

3.4827 

3.3799 
3.2934 

3.2194 

3.1556 

3.0999 

3.0509 
3.0074 

2.9686 

2.9338 

2.9024 

2.8738 

2.8478 

2.8240 

2.8021 
2.78* 

956.66 

39.373 
14.540 

8.9796 

6.7572 

5.5996 

4.8994 

4.4332 

4.1020 

3.8549 
3-6638 

3.5118 

3.3880 

3.2853 

3.1987 
3.1248 

3.0610 

3.0053 

2.9563 
2.9128 

2.8740 

2.8392 

2.8077 

2.7791 

2.7531 

2.7293 
2-70?i| 

963.26 

39.387 
14.473 

8.9047 

6.6810 

5.523* 

4.8232 

4.3572 
4.0260 

3.7790 

3.5879 
3.4358 

3.3120 

3.2093 

3.1227 
3.0488 

2.9849 

2.9291 
2.8800 

2.8365 

2.7977 

2.7628 

2.7313 
2.7027 

2.6766 
2'6528 
i 



AMCP 706-200 

TABLE 6-4(A) (Continued) 

F DISTRIBUTIONS (ADAPTED FROM  Ref. 4) 

fisf[F;utlV2)  ' 99%. fisfc [F;vit v2) -  1% 
fisfUIFw^Vx) «  1%, fisfc [UF-.Vi.Vt) - 99% 
Body of the table gives the value of F. 

Degrees of Freedom in Numerator v^ 

10 12 15 20 24 30 40 60 120 ■ 

1 6055.8 6106.3 6157.3 6208.7 6234.6 6260.7 6286.8 6313.0 6339.4 6366.O 

2 99.399 99.416 99.432 99.449 99.458 99.466 99.474 99.483 99.491 99.501 

3 27.229 27.052 26.872 26.690 26,598 26.505 26.411 26.316 26.221 26.125 

4 14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463 

5 10.051 9.8883 9.7222 9.5527 9.4665 9.3793 9.2912 9.2020 9.1118 9.0204 

6 7.8741 7.7183 7.5590 7.3958 7.3127 7.2285 7.1432 7.0568 6.9690 6.6801 

7 6.6201 6.4691 6.3143 6.1554 6.0743 5.9921 5.9C84 5.8326 5.7572 5.6495 

8 5.8143 5.6668 5.5151 5.3591 5.2793 5.1981 5.1156 5.0316 4.9460 4.8588 

9 5.2565 5.1114 4.9621 4.808O 4.7290 4.6486 4.5667 4.4831 4.3978 4.3105 
10 4.8492 4.7059 4.5582 4.4054 4,3269 4.2469 4.1653 4.0819 3.9965 3.9090 

C\l 

> 11 4.5393 4.3974 4.2509 4.0990 4.0209 3..9411 3.8596 3.7761 3.6904 3.6025 
u 
0 12 4.2961 4.1553 4.0096 3.8584 3.7805 3.7008 3.6192 3-5355 3.4494 3.3608 
4-1 

13 4.1003 3.9603 3.8154 3.6646 3.5868 3.5070 3.4253 3.3413 3.2548 3.1654 
•H lit 3.939^ 3.8001 3.6557 3.5052 3.4274 3.3476 3.2656 3.1813 3.0942 3.0040 

c 15 3.8049 3.6662 3.5222 3.3719 3.2940 3.2141 3.1319 3.0471 2.9595 2.8684 
& 16 3.6909 3.5527 3.4089 3.2588 3.1808 3.1007 3.0182 2.9330 2.8447 2.7528 
c *-< 17 3.5931 3.^552 3.3117 3.1615 3.0835 3.0032 2.9205 2.8348 2.7459 2.6530 

g 18 3.5082 3.3706 3.2273 3.0771 2.9990 2.9185 2.8354 2.7493 2.6597 2.5660 
13 
0) 19 3.^338 3.2965 3.1533 3.0031 2.9219 2.8442 2.7608 2.6742 2.5839 2.4893 

20 3.3682 3.2311 3.0880 2.9377 2.8594 2.7785 2.6947 2.6077 2.5168 2.4212 

t- 21 3.3098 3.1729 3.0299 2,8796 2.8011 2.7200 2.6359 2.5484 2.4568 2.3603 
0 

22 3.2576 3.1209 2.9780 2.8274 2.7488 2.6675 2.5831 2,4951 2.4029 2.3055 

Si 23 3.2106 3.0740 2.9311 2.7805 2.7017 2.6202 2.5355 2.4471 2.3542 2.2559 

24 3.1681 3.0316 2.8887 2.7380 2.6591 2.5773 2.4923 2.4035 2.3099 2.2107 

25 3.1294 2.9931 2.8502 2.6993 2.6203 2.5383 2.4530 2.3637 2.2695 2.1694 

26 3.0941 2.9579 2.8150 2.6640 2.5848 2.5026 2.4170 2.3273 2.2325 2.1315 

27 3.06l8 2.9256 2.7827 2.6316 2.5522 2.4699 2.3840 2.2938 2.1984 2.0965 

28 3.0320 2.8959 2.7530 2.6017 2.5223 2.4397 2.3535 2.2629 2.1670 2.0642 

29 3.0045 2.8685 2.7256 2.5742 2.4946 2.4118 2.3253 2.2344_ 2.1378 2.0342 

30 2.9791 2.8431 2,7002 2.5487 2.4689 2.3860 2.2992 2.2079 2.1107 2.0062 

40 2.8005 2.6648 2.5216 2.3689 2.2880 2.2034 2.1142 2.0194 1.9172 1.8047 

60 2.6318 2.4961 2.3523 2.1978 2.1154 2.0285 1.9360 1.8363 1.7263 1.6006 

120 2.4721 2.3363 2.1915 2.0346 1.9500 1.8600 1.7628 1.6557 1.5330 1.3805 

- 2.3209 2.1848 2.0385 1.8783 1.7908 1.6964 1.5923 1.4730 1.3246 1.000 
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TABLE 64(B) 

F DISTRIBUTION  (ADAPTED FROM Ref. 4) 

fisf(F;vx,v2)  = 97.5%, fisfc (F;v,,Vi) = 2.5% 
fisf[}/F;v2,ut) = 2.5%, fisfc (1/F;v2,vl) = 97.5% 

Body of the table gives the value of F. 

Degrees of Freedom In Numerator v^ 

1 2 3 4 5 6 7 8 9 

1 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.26 
2 38.506 39.000 39.165 39.248 39.298 39.331 39.355 39.373 39.387 

3 17-443 16.044 15.439 15.101 14.885 14.735 14.624 14.540 14.473 

4 12.218 10.649 9.9792 9.6045 9.3645 9.1973 9.0741 8.9796 8.9047 

5 10.007 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6810 

6 8.8131 7.2598 6.5988 6.2272 5.9876 5.8197 5.6955 5.5996 5.523* 

7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8994 4.8232 

6 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4332 4.3572 

9 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.1971 4.1020 4.0260 

10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.7790 

0.1 11 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 3.7586 3.6638 3.5879 

u 12 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 3.6065 3.5118 3.4358 
o 
-p 13 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.3880 3.3120 
c 
•H 14 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853 3.2093 

1 15 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987 3.1227 

16 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248 3.0488 

C l? 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.0610 2.9849 

E 18 5.9781 4.5597 3-9539 3.6083 3•3820 3.2209 3.0999 3.0053 2.9291 
o 

19 5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563 2.8800 

20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365 
Ü, 

VH 
21 5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.8740 2.7977 

o 22 5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392 2.7628 

23 5.7498 4.3492 3.7505 3.4083 3.1835 3.0232 2.9024 2.8077 2.7313 

24 5.7167 4.3187 3.7211 3 • 3794 3.1548 2.9946 2.8738 2.7791 2.7027 

25 5.6864 4.2909 3.6943 3.3530 3.1287 2.9685 2.8478 2.7531 2.6766 

26 5.6586 4.2655 3.6697 3-3289 3.1048 2.9447 2.8240 2.7293 2.6528 

27 5.6331 4.2421 3.6472 3•3067 3.0828 2.9228 2.8021 2.7074 2.6309 

28 5.6096 4.2205 3.6264 3.2863 3.0625 2.9027 2.7820 2.6872 2.6106 

29 5.5878 4.2006 3.6072 3.2674 3.0438 2.8840 2.7633 2.6686 2.5919 

30 5.5675 4.1821 3-5894 3.2499 3.0265 2.8667 2.7460 2.6513 2.5746 

40 5-4239 4.0510 3-4633 3.1261 2.9037 2.7444 2.6238 2.5289 2.4519 

60 5.2857 3.9253 3.3425 3.0077 2.7863 2.6274 2.5068 2.4117 2.3344 

120 5.1524 3.8046 3.2270 2.8943 2.6740 2.5154 2.3948 2.2994 2.2217 

. 5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136 
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TABLE 6-4(B) (Continued) 

F DISTRIBUTION   (ADAPTED FROM  Ref. 4) 

fisf (F; vi,v2)  = 97.5%, fisfc (F; u],f2)  = 2.5% 
fisf(\IF\v2,vx)  = 25%.fisfc[\IF\v1.vx)  = 97.5% 
Body of the table gives the value of F. 

Degrees c f Freedom In Numerator v-. 

10 12 15 20 24 30 40 60 120 „ 

1 968.63 976.71 984.87 993-10 997.25 1001.4 1005.6 1009.8 1014.0 1018.3 
2 39 • 398 39-415 39.431 39.448 39.456 39.465 39.473 39.481 39.490 39.498 

3 14.419 14.337 14.253 14.167 14.124 14.081 14.037 13.992 13.947 13.902 

1* 8.8439 8.7512 8.6565 8.5599 8.5109 8.4613 8.4111 8.3604 8.3092 8.257"1. 
5 6.0I92 6.5246 6.4277 6.3285 6.2780 6.2269 6.1751 6.1225 6.O693 6.0153 

D 5.4613 5.3662 5.2687 5.1684 5.1172 5.O652 5.0125 4.9589 4.9045 4.8491 
r» 4.7611 4.6658 4.5678 4.4667 4.4150 4.3624 4.30?9 4.2544 4.1"/'9 4.1423 

8 4.2951 4.1997 4.1012 3.9995 3.9472 3.8940 3.3398 3.7844 3.7279 3.6702 

9 3.9639 3.8682 3.7694 3.6669 3.6142 3.5604 3.5055 3.4493 3.3918 ••3329 

10 3.7168 3.6209 3.5217 3.4186 3.3654 3.3110 3.2554 3.1984 3.1399 3.0796 

CM 11 3.5257 3.4296 3.3299 3.2261 3.1725 3.1176 3.0613 3.0035 2.9441 2.662- 

U 12 3.3736 3.2773 3.1772 3.0728 3.0187 2.9633 2.9063 2.8478 2.7374 2.724'j 
o 
-p 
03 

13 3.2497 3.1532 3.0527 2.9477 2.8932 2.6373 2.7797 2.7204 2.C59O 2.5955 
C 14 3.1469 3.0501 2.9493 2.8437 2.7888 2.7324 2.6742 2.6142 2.5519 2.487; 
6 
0 15 3.0602 2.9633 2.8621 2.7559 2.7006 2.6437 2.585O 2.5242 2.4611 2.395- 
0) a 16 2.9862 ' 2.8890 2.7875 2.6808 2.6252 2.5678 2.5085 2.4471 2.3831 2.316" 

c 17 2.9222 2.8249 2 .72 30 2.6158 2.5598 2.5021 2.4422 2.3801 2.3153 2.2474 

E 18 2.8664 2.7689 2.6667 2.5590 2.5027 2.4445 2.3842 2.3214 2.2558 2.1869 
o 
-a 19 2.8173 2.7196 2.6171 2.5089 2.4523 2.3937 2.3329 2.2695 2.2^32 2.1337 
0) 20 2.7737 2.6758 2.5731 2.4645 2.4076 2.3486 2.2873 2.2234 2.1562 2.085 3' 
fc, 

21 2.7348 2.6368 2.5338 2.4247 2.3675 2.3082 2.2465 2.1819 2.1141 2.0422 

o 22 2.6998 2.6017 2.4984 2.3890 2.3315 2.2718 2.2097 2.1446 2.0760 2 .00 3' 
(.1 
0) 23 2.6682 2.5699 2.4665 2.3567 2.2989 2.2389 2.1763 2.1107 2.0415 1.9677 

b0 24 2.6396 2.5412 2.4374 2.3273 2.2693 2.2090 2.1460 2.0799 2.0099 1.9353 
0J 

a 25 2.6135 2.5149 2.4110 2.3C05 2.2422 2.1816 2.1183 2.0517 I.98II 1.9050 

26, 2.5895 2.4909 2.3867 2.2759 2.2174 2.1565 2.0928 2.0257 1.9545 1 .8761 

27 2.5676 2.4686 2.3644 2.2533 2.1946 2.1334 2.0693 2.0018 1.9299 I.6527 

28 2.5473 2.4484 2.3438 2.2324 2.1735 2.1121 2.0477 1.9796 1.9072 1.6291 

29 2.5286 2.4295 2.3248 2.2131 2.1540 2.0923 2.0276 1.9591 1.8861 1.8072 

30 2.5112 2.4120 2.3072 2.1952 2.1359 2.0739 2.0089 1.9400 1.8664 1.7667 

kO : .3882 2.2882 2.1819 2.0677 2.OC69 1.9429 1.8752 1.8028 1.7242 1.6371 

6o : .2702 2.1692 2.06l3 1.9445 1.8817 1.8152 1.7440 1.6668 1.5810 1.4B22 

120 2.1570 2.0548 1.9450 1.8249 1.7597 1.6899 1.6141 1.5299 1.4 327 1.3104 

03 2.0483 1.9447 1.8326 1.7085 1.6402 1.5660 1.4835 1.3883- 1.2684 1.OOCO 
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TABLE 6-4 (C) 

F DISTRIBUTION  (ADAPTED FROM Ref. 4) 

fisf(F;v{.vi) - 95%,f/sfc(F;vui>i) - 5% 
fisf (MF; v-i.Vi) - 5%, fisfc (1/F; va, c,) - 95% 
Body of the table gives the value of F. 

Degreee of Freedom In Numerator, vl 
1 2 3 4 5 6 7 8 9 

i 161.45 199.50 215.71 224.58 830.16 233.99 236.77 838.88 840.54 
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 

3 10.128 9.5521 9.2766 9-1172 9.0135 8.9406 8.8868 8.f?4 = 2 8.8123 
4 7.7086 6.9443 6.5014 6.3883 6.2560 6.1631 6.0942 6.0410 5.996Ü 

5 6.6079 5.7861 5.4095 "5.1922 5.0503 4.9503 4.8759 4.8183 4.7725 ' 
6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2066 4.1463 4.0990 

7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767 
8 5.3177 4.4590 4.0662 3.8378 3.6875 3.5806 3.5005 3.4381 3.3881 

9 5.1174 4.2565 3.8626 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789 
10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 

. cy 11 4.8443 3.9823 3.5874 3.3507 3.2039 3.0946 3.0123 2.9480 2.8962 

12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964 
U 
0 13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144 
+.1 

14 4.6001 3.7389 3-3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458 1 15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 8.6408 2.5876 

A 
16 4.4940 3.6337 3.2389 3.OO69 2.8524 2.7413 2.6572 2.5911 2.5377 

17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480 2.4943 

18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563 

S  19 4.3803 3.5219 3.1274 2.8951 2.7401 2.6883 2.5435 2.4768 2.4287 
•a 
41 
41 20 4.3513 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3988 

21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3661 

o 2? 4.3009 3,4434 3.0491 2.8187 2.6613 2.5491 2.4638 2.3965 2.3419 

ra 23 4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748 2.3201 
24 4.2597 3.4028 3.0088 2.7763 2.6207 2.5082 2.4226 2.3551 2.3002 

25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 

26 4.2252 3.3690 2.9751 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655 

27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501 

28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2,2360 

29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2782 2.2229 

30 4.1709 3-3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 

40 4.084b 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 

6o 4.001? 3.1504 2.7581 2.5252 2.3683 2.2540 2.1665 2.0970 2.0401 

L20 3.9201 3.0718 2.6802 2.4472 2.2900 2.1750 2.0867 2.0164 I.9588 

00 3.8413 2.9957 2.6049 2.3719 2.2141 
________ 

2.0986 2.0096 1.9384 1.8799 
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TABLE 64(C) (Continued) 

F DISTRIBUTION  (ADAPTED FROM Ref. 4) 

fisf (F;vx,v7)  =  95%, fisfc (F;Vi,v2)  =  5% 
fisf (MF; v2,v{) =  5%, fisfc C\IF; v2,vx)  = 95% 
Body of the table gives the value of F. 

Degrees of Freedom In Numerator, ■* , 

10 12 15 20 24 30 40 60 120 
rn 

1 241.88 243.91 245.95 248.01 249.05 250.09 251.14 252.20 253.25 254.32 

2 19.396 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496 

3 8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.5720 8.5494 8.5265 

4 5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.7170 5.6878 5.6581 5.6261 

5 4.7351 4.6777 4.6188 4.5581 4.5272 4.4957 4.4638 4.4314 4.3984 4.3650 

6 4.0600 3-9999 3.9381 3.8742 3.8415 3.8082 3.7743 3.7398 3.7047 3.6686 

7 3.6365 3.5747 3.5108 3.4445 3.4105 3.3758 3.3404 3.3043 3.2674 3. .22 98 

8 3.3472 3.2840 3.2184 3.1503 3.1152 3.0794 3.0428 3.0053 2.9669 2.9276 

9 3.1373 1 3.0729 3.0061 2.9365 2.9005 2.8637 2.8259 2.7872 2.7473 2.7067 

>" 10 2.9782 2.9130 2.8450 2.7740 2.7372 2.6996 2.6609 2.6211 2.5801 2.5379 

JH 
11 2.8536 2.7876 2.7186 2.6464 2.6090 2.5705 2.5309 2.4901 2.4480 2.4045 

o 12 2.7534 2.6866 2.6169 2.5436 2.5055 2.4663 2.4259 2.3842 2.3410 2.2962 

a 13 2.6710 2.6037 2.5331 2.4589 2.4202 2.3803 2.3392 2.2966 2.2524 2.2064 

o 14  2.6021 2.5342 2.4630 2.3879 2.3487 2.3082 2.2664 2.2230 2.1778 2.1307 
c 

15 2.5437 2.4753 2.4035 2.3275 2.2878 2.2468 2.2043 2.1601 2.1141 2.0658 

c 16 2.4935 2.4247 2.3522 2.2756 2.2354 2.1938 2.1507 2.1058 2.0589 2.0096 
■H 

17 2.4499 2.3807 2.3077 2.2304 2.1898 2.1477 2.1040 2.0584 2.0107 1.9604 
O 

■a 18 2.4117 2.3421 2.2686 2.1906 2.1497 2.1071 2.0629 2.0166 I.968I 1.9168 
0) 
0) 19 2.3779 2.3080 2.2341 2.1555 2.1141 2.0712 2.0264 1.9796 1.9302 1.8780 
Pi. 20 2.3479 2.2776 2.2033 2.1242 2.0825 2.0391 1.9938 1.9464 1.8963 1.8432 

o 21 2.3210 2.2504 2.1757 2.0960 2.0540 2.0102 1.9645 I.9165 1.6657 1.6117 
CO 
V) 22 2.2967 2.2258 2.1508 2.0707 2.0283 1.9842 1.9380 1.8895 I.838O 1.7831 
11 

to 23 2.2747 2.2036 2.1282 2.0476 2.OO5C 1.9605 1.9190 1.8649 1.8128 1.7570 
0) 24 2.2547 2.1834 2.1077 2.0267 1.9838 1.9390 1.8920 1.8424 1.7897 1.7331 

! 25 2.2365 2.1649 2.0889 2.0075 1.9643 1.9192 1.8718 1.8217 1.7684 1.7110 
: 26 2.2197 2.1479 2.0716 I.9898 1.9464 1.9010 1.8533 1.8027 1.7488 I.6906 

27 2.2043 2.1323 2.0556 1.9736 1.9299 1.8842 1.8361 1.7851 1.7307 1.6717 

28 2.1900 2.1179 2.0411 1.9586 1.9147 I.8687 1.8203 I.7689 1.7138 1.6541 

29 2.1768 2.1045 2.0275 1.9446 1.9005 1.8543 1.8055 1.7537 I.6981 1.6377 

! 30 2.1646 2.0921 2.0148 1-9317 1.6874 1.8409 1.7918 1.7396 1.6335 1.6223 

40 2.0772 2.0035 1.9245 I.8389 1.7929 1.7444 1.6928 1.6373 1.5766 I.5069 

60 1.9926 1.9174 1.6364 1.7480 1.7001 1.6491 1.5943 1.5343 1.4673 1.3893 

120 1.9105 1.8337 1.7505 I.6587 1.6084 1.5543 1.4952 1.4290 1.3519 1.2539 

- 1.8307 1.7522 1.6664 1.5705 1.5173 1.4591 1.3940 1.3180 1.2214 l.oooo 
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TABLE 64(D) 

F  DISTRIBUTION (ADAPTED FROM Ref. 4) 

fisf{F;Pi,v2)  = 90%, fisfc (F;vXlv2) =  10% 
fisf iltF-.Vi.Ui) = 10%,fisfc (UF.Vi.Vi) = 90% 
Body of the table gives values of F. 

Degrees of Freedom In Numerator v 

1 

1 2 3 4 5 6 7 8 9 

i 39-864 49.500 53.593 55.833 57.241 58.204 5e.906 59.439 59.858 

2 8.5263 9.0000 9.1618 9.2434 9.2926 9.3255 9.3491 9.3668 9.3805 

3 5.5383 5.4624 5.3908 5.3^27 5.3092 5.2847 5.2662 5.2517 5-2400 

A 4.5448 4.3246 4.1908 4.1073 4.0506 4.0098 3.9790 3.9549 3.9357 

5 4.0604 3.7797 3.6195 3.5202 3.4530 3-4045 3.3679 3-3393 3.3163 

6 3.7760 3.4633 3 .2888 3.1808 3.1075 3.0546 3.0145 2.9830 2.9577 

7 3.5894 3.2574 3-0741 2.9605 2.8833 2.8274 2.7849 2.7516 £.7247 

8 3.4579 3.1131 2.9238 2.8064 2.7265 2.6683 £.6241 2.5893 2.5612 

9 3.3603 3.OO65 2.8129 2.6927 2.6106 2.5509 2.5053 2.4694 2.4403 

> 10 3.2850 2.9245 2.7277 2.6053 2.5216 2.4606 2.4140 2.3772 2.3473 

o 11 3.2252 £.8595 2.6602 2.5362 2.4512 2.3891 2.3416 £.3040 £.2735 

12 3.1765 2.8068 2.6055 2.4801 2.3940 2.3310 2.2828 2.2446 £.2135 

E 13 3-1362 2.7632 2.5603 2.4337 2.3467 2.2830 2.2341 2.1953 2.I638 
O 
c 14 3.1022 2.7265 2.5222 2.3947 2.3069 2.2426 2.1931 2.1539 2.1220 

15 3.0732 2.6952 2.4898 2.3614 2.2730 2.2081 2.1582 2.1185 2.0862 

16 3.0481 2.6682 2.4618 2.3327 2.2438 2.1783 2.1280 2.0880 £.0553 
E 
0 17 3.0262 2.6446 2.4374 2.3077 2.2183 2.1524 2.1017 2.0613 £.0284 

QJ 18 3.0070 2.6239 2.4160 2.2858 2.1958 2.I296 2.0785 2.0379 £.004? 

AH 
19 2.9899 2.6056 2.3970 2.2663 2.1760 2.1094 2.0580 2.0171 1.9836 

o 20 2.9747 2.5893 2.3801 2.2489 2.1582 2.0913 £.0397 1.9985 1.9649 

n 21 2.9609 2.5746 2.3649 2.2333 2.1423 2.0751 2.0232 1.9819 1.9480 
CD 
0) 22 2.9486 2.5613 2.3512 2.2193 2.1279 2.O605 2.0084 1.9668 1.9327 

23 2.9374 2.5493 2.3387 2.2065 2.1149 2.0472 1.9949 1.9531 1.9189 

24 2.9271 2.5383 2.3274 2.1949 2.1030 2.0351 1.9826 1.9407 1.9063 

25 2.9177 2.5283 2.3170 2.1843 2.0922 2.0241 1.9714 1.9292 1.8947 

26 2.9091 2.5191 2.3075 2.1745 2.0822 2.0139 1.9610 1.9188 1.8841 

27 2.9012 2.5106 2.2987 2.1655 2.0730 2.0045 1.9515 1.9091 1.8743 

28 2.8939 2.5028 2.2906 2.1571 2.0045 1.9959 1.9427 1.9001 1.8652 

29 2.8871 2.4955 2.2831 2.1494 2.0566 1.9878 1.9345 1.8918 1.8568 

30 2.8807 2.4887 2.2761 2.1422 2.0492 1.9803 I.9269 1.8541 1. 34:10 

40 2.8354 2.4404 2.2261 2.0909 1.9968 I.9269 1.8725 1.8289 1.7929 

60 2.7914 2.3932 2.1774 2.0410 1.9457 1.8747 1.8194 1.7748 1.7380 

120 2.7478 2.3473 2.1300 1.9923 1.8959 1.8238 1.7675 1.7220 1.6843 

DO £.7055 2.3026 2.0838 1.9449 1.8473 1.7741 1.7167 1.6702 1.6315 
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TABLE 64(D) (Continued) 

F DISTRIBUTION   (ADAPTED FROM Ref. 4) 

fisf (F; vl,v2)  = 90%, fisfc [F; v,,v2)  =  10% 
fisf (MF;V2,P])  =  10%, fisfc (11F; v7, v,)  = 90% 
Body of the table gives values of F. 

Degrees of Freedom In Numerator v 

10 12 15 20 24 30 40 60 120 

1 60.195 60.705 61.220 61.740 62.002 62.265 62.529 62.794 63.061 63.328 

2 9.3916 9.4081 9.4247 9.4413 9.4496 9.^579 9.4663 9.4746 9.4829 9-4913 

3 5.2304 5.2156 5.2003 5.1845 5.1764 5.1681 5.1597 5.1512 5-1425 5.1337 

4 3.9199 38955 3.8689 3.8443 3.8310 3.8174 3.8036 3.7896 3-7753 3-7607 

5 3.2974 3.2682 3.238C 3.2067 3.1905 3.1741 . 3.1573 3.1402 3.1228 3.1050 

6 2.9369 2.9047 2.8712 2.8363 2.8183 2.8000 2.7812 2.7620 2.7423 2.7222 

7 2.7025 2.6681 2.C322 2.5947 2.5753 2.5555 2.5351 2.5142 2.4928 2.4708 

3 2.5330 2.5020 2.4642 2.4246 2.4041 2.3830 2.3614 2.3391 2.3162 2.2926 

9 2 .4163 2.3789 2.3396 2.2983 2.2768 2.2547 2.2320 2.2085 2 .1843 2.159; 

10 2.3226 2.2841 2.243- 2.2007 2.1784 2.1554 2.1317 2.1072 2.0618 2.0554 
> 11 2.2462 2.2087 2.I671 2.1230 2.1000 2.0762 2.0516 2.0261 1.9997 I.972I 

U !2 2.1878 2.1474 2.1049 2.0597 2.0360 2.0115 1.9861 1.9597 1.9323 1.9036 

13 2.1376 2.0966 2.0532 2.0070 1.9827 1.9576 1.9315 1.9043 1.8759 1.8462 
c 

14 2.0954 2.0537 2.0095 1.9625 1.9377 1.9119 1.8852 1.8572 1.8280 1.7973 
E 
O 
c 15 2.0593 2.0171 1.9722 1.9243 1.8990 1.8728 1.8454 1.8168 1.7867 1.7551 

& 1c 2.0281 I.9854 1.9399 1.8913 I.8656 1.8388 1.8106 1.7816 1.7507 1.7182 
c 17 2.0009 1.9577 1.9117 1.8624 1.8362 I.8090 1.7805 ' 1.7506 1.7191 1.665c 

E 13 1.9770 1.9333 1.8868 I.8368 1.8103 1.7827 1.7537 1.7232 I.6910 I.6567 

19 1.9557 1.9117 1.8647 1.8142 1.7873 1.7592 1.7298 I.6988 I.6659 I.6308 

I 20 1.9367 1.8924 1.8449 1.7938 1.7667 1.7382 I.7083 I.6768 1.6433 1.6074 

21 1.9197 1.8750 I.8272 1.7756 1.7481 1.7193 I.6890 I.6569 1.6228 1.5862 
0 .... 1.9043 1.8593 1.8111 1.7590 1.7312 1.7021 1.6714 1.6389 1.6042 1.5668 

01 23 1.3903 1.8450 1.7964 1.7439 1.7159 1.6864 1.6554 1.6224 1.5871 1.5490 

to 24 1.8775 1.8319 1.7831 1.7302 1.7019 I.6721 1.6407 1.6073 1.5715 1.5327 
a 25 1.8658 1.8200 1.7708 1.7175 I.689O 1.6589 1.6272 1.5934 1.5570 I.5176 

26 1.8550 I.8090 1.7596 1.7059 1.6771 1.6468 1.6147 1.5805 1.5437 1.5036 

27 1.8451 1.7989 1.7492 1.6951 1.6662 1.6356 1.6032 I.5686 1.5313 1.4906 

23 1.8359 1.7895 1.7395 I.6852 I.656O I.6252 1.5925 1.5575 1.5196 1.4764 

29 1.8274 1.7808 1.7306 1.6759 1.6465 1.6155 1.5825 1.5472 1.5090 1.4670 

30 1.8195 1.7727 1.7223 1.6673 1.6377 1.6065 1.5732 1.5376 1.4989 1.4564 

40 1.7627 1.7146 1.6624 I.6052 1.5741 1.5411 1.5056 1.4672 1.4248 1.3769 

60 1.7070 1.6574 1.6034 1.5435 1.5107 1.4755 1.4373 1.3952 1.3476 1.2915 

120 1.6524 1.6012 1.5450 1.4821 1.4472 1.4094 1.3676 1.3203 1.2646 1.1926 

« 1.5987 [ 1.5458 1.4871 1.4206 1.3832 1.3419 1.2951 1.2400 1.1686 1.0000 
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CHAPTER 7 

EXPONENTIAL DISTRIBUTION 

7-0 LIST OF SYMBOLS R ■ ^-Reliability 

C * j-Confidence s- » denotes  statistical   definition 

Cdf = Cumulative distribution func- 
tion 

Sf ■ Survivor function 

StDv {} ■ standard deviation 
C,L, U =* subscripts that imply a j-confi- 

dence level; C is general, L is Var{ ) ■ variance 
lower, C/ is upper 

e ■ scale parameter 
C*nf{  } ■ j-Confidence level 

X ■ rate parameter 
CM,{ \ ■ /th central moment 

V * degrees of freedom 
cv{ > * coefficient of variation: 

StDv|   \IE{   } T ■ random variable 

E { \ * j-Expected value 

exp = base name for exponential dis- 
tribution 

exp/ ■ Cdf   for   exponential   distri- 
bution 

exp/c = Sf for exponential distribution 

Mt\   \ = /th moment about the origin 

NCMf j }     m normalized   /th   central   mo- 
ment; CM, |    }   /[StDvj   }]' 

pdf ■ probability density function 

pmf ■ probability mass function 

Pr\  ) « Probability 

PrD - Probability distribution 

{",'}. (*;*) e the fixed parameters are listed 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

■ the complement, e.g., Js l - 
<t> where <t> is any probability 

7-1  INTRODUCTION 

This is the most commonly used PrD for 
life (e.g., time to failure). It is closely related 
to the Poisson process. The base name exp is 
given to the exponential distribution (for 
exponential). The suffix / implies the Cdf, 
and the suffix fc implies the Sf (complement 
of the Cdf). 

7-2 FORMULAS 

X = rate parameter, X > 0, (X = I/o) 

7-1 
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6 = scale parameter, 0 > 0, (0 = 1/X) 

T = random variable, r > 0 

pdf{r;\) = Xexp(-Xr) (7-la) 

pdf{r,6) =(l/0)exp(-T/0) (7-lb) 

Cdf{r\\) = exp/(Xr) = 1 -exp( -Xr) 
(7-2a) 

O//{ T; 0} = exp/(T/0) = 1 - exp( - r/0) 
(7-2b) 

5/{T;X} = exp/c(XT) = exp(-Xr)       (7-3a) 

5/{r; 0} = exp/c(r/0) = exp( -T/0)    (7-3b) 

failure rate {T;X} =X (7-4a) 

failure rate{r; 0} = 1/0 (7-4b) 

E{T;6) =0 

StDv{r;0} = 0 

CV{T;0} = 1 

CM3{T;6) = 203 

7VGW3{r;0} =2 

mode{T;0} =0 

median (r;0) = 0 ln2 * 0.70 

Fig. 7-1 shows some curves of the pdf. The 
failure rate X is constant; so no graphs of it 
are shown. 

It is possible to substitute (T - T0) for r, 
where r0 often is called the "guarantee 
period". Ref. 6 (Chapter 5) discusses this case 
thoroughly. 

7-3 TABLES 

In the 1950's several tables were generated 
for the exponential distribution in reliability, 
e.g., Ref. 2. Since the exponential function 
has been common in mathematics for hun- 
dreds of years, several extensive tables exist in 
their own right, e.g., Ref. 1 (Tables 4.4 and 
4.5). The electronic calculator with engineer- 
ing functions often contains the exp and fin 
functions, thus tables are virtually unneces- 
sary. 

Table 7-1 is an abbreviated set of tables. It 
uses the fact that expCxj + ••• + xs) = 
expCxj) ••• expOcj). 

In reliability work, more accuracy usually 
is required for small values of the argument 
than for large ones, because very low reliabili- 
ty (large values of the argument) is bätl 
anyway and the degree of badness need not 
be known to many significant figures. Eq. 7-5 
is good for all values of the argument, but is 
easiest to use for small values. The error is 
always less than the next unused term. (It is 
the usual power series: x" /«!.) 

exp/(x) = 1 - e~ = *(1-^+ff-jf + -) 
(7-5) 

-o.i For example, exp/(0.1) = 1 - e 
= 0.1(1 -0.0500+ 0.0017) = 0.09517. 

Figure 7-2 is a nomograph for estimating R 
= exp(-XO = exp(-//0). 

7-4 PARAMETER ESTIMATION 

An ^-sufficient statistic for estimating the 
parameter of the exponential distribution is 
total-test-time, i.e., the total time to acquire 
the specified number of failures. 
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3.0-1 

Figure 7-1.  Exponential Distribution 

TABLE 7-1 

TABLES OF eTx 

expf (x) = 1 — e' 
expfc (x)    =   e~" 

X e-* e-o.ix e-o.oi* -0.0 0 IX -0 .0 0 0 1 X 

0 1 1 1 1 1 

1 0.367Q79 0.904837 0.9900498 0.93 000500 0.94 000050 

2 0.135335 0.818731 0.9801987 0.92 800200 0.93 8000200 

3 0.0497871 0.740818 0.9704455 0.92 700450 0.93 7000450 

4 0.0183164 0.670320 0.9607894 0.92 600799 0.93 6000800 

5 0.02 673795 0.606531 0.9512294 0.92 501248 0.93 5001250 

6 0.02 247875 0.548812 0.9417645 0.92401796 0.93 4001800 

7 0.03911882 0.496585 0.9323938 0.92 302444 0.93 3002449 

8 0.03 335463 0.449329 0.9231163 0.92 203191 0.93 2003199 

9 0.03123410 0.406570 0.9139312 0.92 104038 0.93 1004049 
10 0.04 453999 0.367879 0.9048374 0.92 004983 0.93 0004998 

nple e~ i .79 6 3 = 0.367879 X 0.496585 X 0.9139312 X 0.99401796 X 0.9997000450 = = 0.165911 

Example e-00012   = 1 X 1 X 0.999000500 X 0.9998000200 = 0.99880072 
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Mean Time 
Between 
Failure, 

hr 
e 

10,000 -^ 

5,000-- 

1,000 — 

500 

100 

50 4_ 

10 

5 

Hourly 
Failure 
Rate 

X 

.0001 

.0005 

.001 

.005 

.01 

Reliability 

- .999999 

.999995 

.99999 

.99995 

.9999 

.9995 

.999 

.995 

.99 

.95 

.90 

5 

C_ .1 

.05 

.1 

5 

1.0 

Given equipment mean  time to 
failure or hourly failure rate 
and operating  time,   solve for 
reliability.     Connect "9" and 
"t" values with  straight  line. 
Read "Ä". 

R  = expfc(Xt) = exp(-Xt) 
= exp£e(-t/6) = exp(-t/9) 

Operating 
Time, 
hr 

.01 

.02 

.03 

.05 - 

.1 — 

2 
3 
5 

1 -^ 

2 
3 
4 
5 

10-1 

20 
30 

50 

100- 

200- 
300- 

500 U 

Figure 7-2.  Reliability Nomograph for the Exponential Distribution 
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Notation: 

T = total test time for all units; T > 0. 
This is the random variable. 

r - number of failures; r > 0. This is not a 
random variable; in principle, it is 
fixed at the beginning of the test. 

The items can be tested in any order, at any 
time, and with or without replacement. The 
only restriction is that items be removed from 
test (e.g., end of test) only upon the failure of 
some item. If this restriction is not fulfilled, 
then the Poisson distribution in Chapter 4 
must be used. 

The usual point estimates for 0 and X are 

0 = T/r (7-6a) 

X = r/T (7-6b) 

0 is unbiased and maximum likelihood (in 
fact, it has virtually all the desirable proper- 
ties). X is maximum likelihood (but is biased). 

0/0 has the x2 lv distribution with v = Ir, viz., 

Cdf{6/6;r} = csnRB/ß; 2r) (7-7a) 

X/X has the x2 lv distribution with v = 2r, i. e., 

Cdf{ X/X; r} = csnf(\/\; 2r) (7-7b) 

5-Confidence limits can be set by Eq. 7-8. 

Conf{X < X(x»} = csnfKx2lv); 2r]    (7-8a) 

Conf {0 < 0/(x»} =csnfc[(X
2/v); 2r] (7-8b) 

Table 7-2 shows the ratio of the upper and 
lower symmetrical s-confidence limits as a 
function of the number of failures; the ratio is 
not a function of anything else. This ratio is 
very large for any reasonable number of 
failures; e.g., for 5 failures and only 80% 
s-confidence, the ratio is 3.3 (from Table 7-2). 
That means that the true value is uncertain to 
a factor of over 3. To get an uncertainty of 
10% (a ratio of 1.10) at a 95% s-confidence 
level requires about 1700 failures (from Table 
7-2). 

Example. Ten items are put on test. The 
failure/censoring times are as listed in the 
table. All times are in hours and are ordered. 

1. 
2. 

142 
205 

3. 249 
4. 448   (3   unfailed   items   were   also 

removed) 
5. 1351 
6. 2947 (the last item was also removed). 

Make estimates for 0, X, assuming that the 
times-to-failure are exponentially distributed. 
All censoring was done at a failure; so this 
section applies; i.e., the number of failures is 
not a random variable, the total-test-time is a 
random variable. 

7-5 
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Procedure 

1. Calculate total-test-time T. 

2. State the number of failures r. 

3. Calculated and Ö from Eq. 7-6. 

4. Calculate the 5% and 95%5-confidence 
limits using Eq. 7-8 and Table 6-2. 
(Subscripts L, U imply Lower and Upper 
s-confidence limits.) 

5.  Make the ^-confidence statements. 

1.  T 

2. r 

3. X 
0 

Example 

=   142 + 205 + 249+4X448+1351 
+ 2 X 2947 = 9633 

=  6 

= 0.6229/1000-hr 
=   1605.5 hr 

6. Calculate the ratio of upper to lower 
s-confidence limits. (See also Table 7-2). 

4- (X2/^)5% 12 =0-4355 
(X2/^)95%;12 = 1.7522 
X^        = (0.6229/1000-hr) X 0.4355 

= 0.2713/1000-hr 
6U       = (1605.5 hr)/0.4355 

= 3687 hr 
Xu       = (0.6229/1000-hr) X 1.7522 

=  1.091/1000-hr 
6L       = (1605.5 hr)/1.7522 = 916hr 

5. s-Confidence level 
= 95%-5% = 90%. 
Conf { 0.2713/1000-hr <X< 1.091/1000-hr) 

= 90% 
Conf j 916 hr<0< 3687 hr } =90% 

6. ratio = 4.0 

Note how misleading the point estimates are 
with all of their apparent precision. 

The test did not give as much information 
about the parameter as we would have liked. 
This paradox is well known and has led to 
several suggestions to avoid it; e.g., use 
Bayesian methods, or use smaller s-confidence 
levels. 

The data in this test were generated using a 
set of 10 pseudorandom numbers with d = 
1000 hr (X = 1.0/1000-hr)'. The data are quite 
unevenly distributed which again shows the 
wide variability in samples which are not 
large. 

Special tables for making these inferences 

have been generated; e.g., Refs. 2, 4, and 5. 
The x2 lv (or x2) tables are just as easy to use, 
and one doesn't get lost in someone else's 
partially explained mathematics. 

Often it is desirable to test whether or not 
the data might reasonably have come from an 
exponential distribution. For general alter- 
natives, see Chapter 14. 

For the specific alternative of a Weibull 
distribution, see Chapter 8. A s-confidence 
interval usually is generated on the shape 
parameter. If that interval includes unity, the 
exponential hypothesis need not be rejected. 
In most practical situations there are so few 
data that the exponential hypothesis is not 
rejected; indeed, it would be difficult to reject 
many other hypotheses as well. 
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TABLE 72 

RATIO OF UPPER TO LOWER s-CONFIDENCE LIMITS FOR THE EXPONENTIAL 
PARAMETER (WITH EQUAL SIZE TAILS ON EACH SIDE) 

Body of table gives the ratio 

number of 
failures r 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

12 
14 
16 
18 
20 

25 
30 
35 
40 
45 
50 

60 
70 
80 
90 
100 

150 
200 
250 
300 
400 
500 

1000 

1500 
2000 
2500 
3000 
4000 
5000 

10000 

s-Confidence Level 

95% 98% 99% 607        80%       90% 
(20%,°80%)  (10%, 90%) (5%, 95%) (2«, 974%) (1%, 99%) (4%, 994%) 

1.92 
1.83 
1.77 
1.71 

1.64 
1.57 
1.53 
1.49 
1.46 

1.41 
1.36 
1.33 
1.31 
1.29 
1.27 

1.24 
1.22 
1.21 
1.19 
1.18 

1.15 
1.13 
1.11 
1.10 
1.088 
1.078 
1.055 

1.044 
1.038 
1.034 
1.031 
1.027 
1.024 

1.017 

l+(1.7//r") 

22 
7.3 
4.8 
3.8 
3.3 
2.9 
2.7 
2.5 
2.4 
2.3 

2.1 
2.0 
1.91 
1.84 
1.78 

1.68 
1.60 
1.55 
1.50 
1.47 
1.44 

1.39 
1.36 
1.33 
1.31 
1.29 

1.23 
1.20 
1.18 
1.16 
1.14 
1.12 
1.084 

1.068 
1.059 
1.053 
1.048 
1.041 
1.037 

1.026 

58 
13 
7. 
5. 
4. 
4. 
3.6 
3.3 
3.1 
2.9 

2.6 
2.4 
2.3 
2.2 
2.1 

1.94 
1.83 
1.75 
1.69 
1.64 
1.60 

1.53 
1.48 
1.45 
1.42 
1.39 

31 
26 
23 
21 
18 
16 
11 

1.089 
1.076 
1.068 
1.062 
1.053 
1.048 

1.033 

150 
23 
12 
8.0 
6.3 
5.3 
4.6 
4.2 
3.8 
3.6 

3.2 
2.9 
2.7 
2.6 
2.4 

2.2 
2.1 
1.95 
1.86 
1.80 
1.75 

1.66 
1.60 
1.55 
1.51 
1.48 

1.38 
1.32 
1.28 
1.25 
1.22 
1.19 
1.13 

1.11 
092 
082 
074 
064 
.057 

460 
45 
19 
12 
9. 
7. 
6. 
5. 
5. 
4. 

1.040 

3.9 
3.6 
3.3 
3.1 
2.9 

2.6 
2.4 
2.2 
2.1 
2.0 
1.94 

1.83 
1.75 
1.69 
1.64 
1.59 

1.46 
1.39 
1.34 
1.31 
1.26 
1.23 
1.16 

1.13 
1.11 
1.097 
1.089 
1.076 
1.068 

1.048 

1100 
72 
27 
16 
12 
9. 
7. 
6. 
5. 
5. 

4.6 
4.1 
3.7 
3.4 
3.2 

2.8 
2.6 
2.4 
2.3 
2.2 
2.1 

1.95 
1.86 
1.78 
1.72 
1.68 

1.53 
1.44 
1.39 
1.35 
1.29 
1.26 
1.18 

1.14 
1.12 
1.11 
1.099 
1.085 
1.076 

1.053 

1 + (2.6/^r) 1 + (3-.3//r") 1 + (3.9/v^) 1 + (4.7/*7) 1 + (5.2//r") 
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CHAPTER 8 

WEIBULL DISTRIBUTION 
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8-0 LIST OF SYMBOLS s- = denotes   statistical   definition 

ACovj  } = estimated  asymptotic  covari- 
ance 

Sf = Survivor function 

StDvj   ( = standard deviation 
AVar{   } = estimated asymptotic variance 

Var{   } = variance 
C = 5-Confidence 

wei = base name for Weibull distri- 
Cdf = Cumulative distribution func- bution 

C,L, U 

CMt{   \ 

Conf{   } 

CV{  } 

tion 

= subscripts that imply a s-confi- 
dence level; C is general, L is 
lower, t/is upper 

= /in central moment 

= «-Confidence level 

= coefficient of variation: 
StDvj   \/E{  } 

= s-Expected value 

M,[  ) = ith moment about the origin 

NCMt{  \ = normalized   ith   central   mo- 
ment; CM( {   }/[StDv{    }]' 

nf = number of failures 

pdf = probability   density   function 

pmf = probability mass function 

Pr{   } = Probability 

PrD = Probability distribution 

R = «-Reliability 

weif 

weife 

a 

{•;•},(■;■) 

= Cdf for Weibull distribution 

= Sf for Weibull distribution 

= scale parameter 

= shape parameter 

= random variable 

= Bn(-£nÄ) 

= the fixed parameters are listed 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

= the complement, e.g., 0=1-0 
where 0 is any probability 

8-1   INTRODUCTION 

This is a very commonly used PrD for life 
(e.g., time-to-failure). It is a rather tractable 
PrD and is reasonably rich in being able to fit 
various sets of data. The base name wei is 
given to the Weibull distribution (for Wei- 
bull). The suffix / implies the Cdf and the 
suffix fc implies the Sf (complement of the 
Cdf). 

8-1 
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The   2-parameter Weibull distribution al- 
ways is implied, unless stated otherwise. 

8-2  FORMULAS 

a = scale parameter, a > 0 

0 = shape parameter, 0 > 0 

T = random variable, T > 0 

(if 0 < 1, then r > 0 for the pdf) 

pdf{ r;a,ß}= (ß/a) (r/af "'exp[ - (r/a)*3) 

(8-1) 

Cdf{r, a, 0} = weif (riot; ß) = exp/[ (r/af) 

= l-expt-(r/ay»]       (8-2) 

Sf{r; a,ß}= weifc(r/a; ß) = exp/c[(r/a)'3] 

= exp[-(T/a)'3] 

failure rate { T; a, (3} = (0/a) (r/a y» "! 

ft,. = r(i+i/« 

£{7;a, 0} =«£, 

StDv{r;a,0} = a(62 -6
2,)1/2 

(8-3) 

(8-4) 

1/ 2 

0/„/(^a") = (-ir(l-») 

for « > 1 

(i,./*'i > l,fori> 1) 

M„= O"ZJ„ ("th moment about the origin) 

(atf-l)1^, for0> 1 
mode{T; a, ß } = < 

I 0, otherwise 

median (r; a, ß ) = a(ln2)/j3 * 0.7a//3 

Other types of parameters are often used, e.g., 
% in place of -ßßn a; but the ones used here 
have the most direct engineering meaning, a 
often is called the characteristic life; it is 
useful because the Sf for t = a is \/e =» 
0.36788, regardless of ß. 

Fig. 8-1 shows the pdf, and Fig. 8-2 shows 
the hazard rate, both as a function of a and ß. 
When 0 = 1, the Weibull distribution reduces 
to the exponential. Fig. 8-3 is a contour plot 
of the failure rate. 

It is possible to substitute (T ~ T0) for T, 

where r0 is called the "guarantee period". 
Ref. 1 (Chapter 5) discusses this case 
thoroughly. Unless there is a strong physical 
reason why T0 ought not to be zero, it is wise 
to set T0 = 0 and deal only with the 
2-parameter Weibull distribution. 

8-3 TABLES 

The exponential function has been com- 
mon in mathematics for many years. Explicit 
tables of the Weibull distribution are rare if 
they exist at all. Electronic calculators that 
have engineering functions generally can cal- 
culate the desired expressions for the Weibull 
distribution. 

8-4 PARAMETER ESTIMATION 

Only the 2-parameter Weibull distribution 
is discussed here. The 3-parameter Weibull 
distribution [(r - r0) substituted for T] is not 
recommended unless there are compelling 
physical reasons to use it. Ordinarily there are 
not enough data to estimate r0 with any 
certainty at all. Often r0 is adjusted by an 
analyst to "straighten out" the graph on 
Weibull probability paper; this is very poor 
practice because sample Cdf's of reasonable 
size are rarely straight when plotted on the 
proper probability paper. See Ref. 1 (Chapter 
5) for parameter estimation of the 3-param- 
eter Weibull distribution. 
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3.6 1 
3.0- 

2.4- 

■o   1.8 
a. 

1.2 

0.6- 

(3 = 0.3 FOR ALL CURVES 

0.50 
—I— 

1.0 
—i— 

1.& 
—I— 
2.0 

 1  
2.5 

TIME 

—I— 
3.0 3.5 4.0 4.5 5.0 

(A)   FOR SHAPE PARAMETER ß = 0.3. THIS SET OF CURVES IS TYPICAL FOR0< J3< 1. <THE pdf's - » AS TIME - 0+.) 

4.2-t 

(3 = 3 FOR ALL CURVES 

= 3 

1 
2.0 

1 
2.5 

TIME 

1 
3.0 3.5 

1 
4.0 4.5 

1 
5.0 

(B) FOR SHAPE PARAMETER ß - 3.0. THIS IS TYPICAL FOR ß > 1. (FOR 1  < ß < 2, THE pdf-SLOPE 

Figure 8-1.  Wei bull Distribution, pdf 
~ AS TIME -» 0+.) 
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3.0' 

2.5- 

2.0 

< 
DC 

< 
"■       1.0) 

0.5 

0 = 0.3 FOR ALL CURVES 

a = 0.3 

 1 1 1 1 1 1 1 1 1 r- 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

TIME 

(A)   FOR SHAPE PARAMETER/3 = 0.3. THIS SET OF CURVES IS TYPICAL FORO<0< 1. (THE FAILURE RATE 
AS TIME -0+.) 

I i 

1.0 1.5 2.0 2.5 3.0 3.5 4.5 5.0 

TIME 

(B)   FOR SHAPE PARAMETER 0 = 3. THIS IS TYPICAL FOR 0 > 1.IFOR 1 <0<2, THE FAILURE-RATE 

SLOPE -»-AS TIME -* 0+.   AS TIME -» ■», THE FAILURE RATE -+ ~. 

Figure 8-2.  Weibull Distribution, Failure Rate 
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8-4.1  GRAPHICAL METHOD 

Graphical estimation is feasible using spe- 
cial Weibull probability paper. One ought 
always to try to get some idea of the 
uncertainty involved in the estimates, no 
matter how roughly the uncertainty is guessed 
at. 

8-4.2 MAXIMUM   LIKELIHOOD  METHOD 

The method of maximum likelihood (ML) 
is virtually the only analytic technique that is 
used. Unfortunately, one of the 2 ML equa- 
tions cannot be solved explicitly, and iterative 
techniques must be used. The ML method is 
suitable for any kind of censoring, and always 
can be used. Even though it is somewhat 
tedious, it is recommended here because the 
amateur analyst "can't" go wrong with it. 

Estimating the uncertainty in the ML esti- 
mates is difficult because one knows only the 
asymptotic (large sample) behavior. The esti- 
mates are asymptotically s-normal; this fact is 
used in making ^-confidence statements. 

Notation: 

2 
fail 

2 
all 

= number of failures 

= failure or censoring time for item i 
(if more than 1 item is censored at 
the same time, each is given the 
value Xj) 

= sum only over all failed items 

= sum over all times (failed and cen- 
sored) 

7,-(0) = *?/£*? 
/     all 

gW ~ J + b ^ ln xi ~ £T,(« In xt = 0 
P        /   faü all 

(8-5) 

The 7, (ß) must be calculated each time the 
value of ß is changed. There is only one 
positive value of ß which satisfies the equa- 
tion; so Newton's method, linear inter- 
polation, or any standard method works quite 
well. If the data are first graphed on Weibull 
probability paper, the graphical value of ß can 
be used to begin the iteration. Otherwise, 
begin with ß = 1 (it's about as good as any 
other). 

The equation for 5 is 

(8-6) 

The elements of the asymptotic covariance 
matrix are estimated by the following expres- 
sions : 

«^•Mi)(j)(7&.) 

(8-8) 

(8-9) 

where 

all \(X   / 

58 r S 1L G3)lnx, lna 

The equation to be solved iteratively is 
T2 =• 1    *   — 

all \a / 

-i 2 
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AVar   = estimated asymptotic variance 

ACov   = estimated asymptotic covariance 

Ap       = estimated   asymptotic   correlation 
coefficient 

AStDv = estimated asymptotic standard devi- 
ation 

AStDv{-} = [AVar{-}]1/2 (8-10a) 

Ap{lna,/3 } = 
ACov {Ina J} 

[AVar{lna}AVar(3}]1/2 

Eq. 8-4 can be rewritten as 

i// = j31nr - 01na (8-11) 

where 

4> = ln( - ln#). 

The two usual problems are to estimate \p 
(and thus R) given r, and to estimate r, given 
R (and thus \j/). Since the variances are not 
always small, it is wise to consider finr and 
Cna instead of r and a. The AVar's of ßnr and 
\p are 

AVar{ $) = (ln[r/a ] )2 AVar {ß } 

+ ß2AVar{lna) 

-2ß(ln[T/a])ACov{lna,/3} 

(8-12) 

AVar {ßnr}   = (i//2/ß4) Avar {ß} 

+ AVar{finä}-(2i///ß2) 

X ACov {2na,ß}        (8-13) 

Approximate ^-confidence limits are set by 
assuming that the parameters are s-normally 
distributed with mean given by the maximum 
likelihood value and standard deviation given 
by the square root of the asymptotic variance. 
For small samples, the answers are very rough, 
but they do serve the purpose of showing the 
uncertainty. 

Example. Ten items were put on test. The 
failure/censoring times are as listed in the 
table. All times are in hours and are ordered. 

1. 142 
2. 205 
3. 249 
4. 448 (3   unfailed 

removed) 
5. 1351 
6. 2947 i (the last item 

items   were   also 

Estimate a, ß assuming that the times to 
failure have the Weibull distribution. (The 
following calculations were all performed on 
an HP-45 electronic calculator-a computer is 
not necessary if there aren't too many data.) 
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AMCP 706-200 

Procedure 

1. Solve Eq. 8-5 by successive approxima- 
tion. Linear interpolation on the values 
of g closest to zero is simple; it is quite 
similar to Newton's method with numeri- 
cal differentiation. Choose ß = 1.0 and 
0.8 for the first 2 trials (just guess). Use 
2 or 3 point interpolation to estimate 
further values of j§ • 

2. Solve Eq. 8-6 for«. 

3. Use Eqs. 8-7, 8-8, and 8-9 to get the 
asymptotic covariance matrix. («^ = 6) 

Example 

4. Use Eq. 8-10 to get the asymptotic 
standard deviations and correlation 
coefficient. 

5. Use ±1 standard deviation to put approxi- 
mate 68% symmetrical «-confidence limits 
on fin a, a, ß. 

6. Use Eq. 8-12 to find AVar {4> \ = 
AVar jfin(-fin^)} 

7. From Step 6, evaluate \p ± AStDv ( \p\ 
and thus the uncertainty in R (for 
approximately 68% s-confidence) at T = 
100 hr(/? = 93.5%). 

8. Use Eq. 8-13 to find AVar { finr} 

From Step 8, evaluate finr ± 
AStDv {finr) and thus the 
uncertainty in r (for approxi- 
mately 68% s-confidence) at 
R = 93.5%(r= lOOhr), i/< = 
-2.70 

ß Riß) 
1.0 -0.1760 
0.8 +0.2444 
0.916 -0.0188 
0.9082 -0.0027 
0.9069 -0.000011 

ß = 0.9069 

2. a = 1614.77 

3. 7,   = -0.1012 
f\  = 2.0959 
AVar {fine*}   = 0.2036 = 0.4512 

AVar{ ß )    =0.07991  = 0.2832 

ACov  {fina,j3}    = -0.00892 = - 0.0699 
X 0.451 X 0.283 

4. AStDv {fin&} =0.451 
AStDv \ß[   = 0.283 
Ap  {ßna.ß}  = -0.0699 

5. Conf  {6.936 < fin a < 7.838 }   * 68% 
Conf { 1029 hr < a < 2535 hr }   * 68% 
Conf  {0.62 <j3< 1.19 }   = 68% 

6. AVar {*}  =[fin 1615 hr 

+ 0.167 + 0.0162 (fin. 
1615 hr 

.!   X 0.0799 

) 

7. AVar  {i//}   = 0.740 = Ü.8602 

\p = 0fin (r/a)= -2.705 
Conf   { -1.845 <i/>< -3.565  }    * 68% 
Conf {0.854 <i?< 0.972 }   * 68% 

8. AVar {finr}   = 0.118i//2 + 0.0217i// 
+ 0.204. 

9. AVar { finr }  = 1.006 =   1.0032 

finr = 4.605 
Conf { 3.602 < finr < 5.608   } * 68% 
Conf  { 36.7 hr < r < 273 hr }   * 68% 
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The point of going into the analysis in 
detail is to show that the calculation of the 
uncertainties is by far the most important 
contribution of statistics. Without those cal- 
culations of uncertainty, a dangerous delusion 
of accuracy would prevail. These data are the 
same as in the example in Chapter 7. They are 
from an exponential distribution with param- 
eter 6 = 1000 hr., i.e., a Weibull distribution 
with/J= \,a= 1000 hr. 

8-4.3  LINEAR ESTIMATION METHODS 

There are many linear estimation tech- 
niques in the literature. None are given here 
because they require extensive tabulations. 
The tabulations are usually only for specific 
sample sizes. Ref. 1 (Chapter 5) discusses 
many of these and gives the references. Ref. 2 
(Chapter 3) collects several of the tables. It is 
usually wise to go back to the original paper if 
the explanation of the use of any reproduced 
table is not clear and explicit. For example, 
some techniques are designed for uncensored 
samples, others can be used only if all 
censoring is at the end of the test. Many of 
the methods are very good when they apply; 
it is wise to consult a statistician about using 
them and about the methods for estimating 
uncertainty (e.g., s-confidence intervals). 

8-4.4 TEST FOR FAILURE RATE: IN- 
CREASING, DECREASING, OR CON- 
STANT 

hypothesis were true), then you ordinarily 
accept the alternate hypothesis. But very 
often the data do not force you to reject your 
hypothesis—your data are quite reasonable if 
the hypothesis is true. Then what you really 
ought to say is "This is a reasonable hypothe- 
sis; there may also be many other reasonable 
hypotheses." 

For the example in par 8-4.2, ß * 0.91, and 
a„ * 0.28 [öß =StDv {$} ). If /3true = 1, 
you'd get a ß as low as (or lower than) 0.91 at 
least gauf[(0.9l - l.U0)/0.28] = 37% of the 
time. The data do not force you to reject the 
hypothesis that ß = 1. 

Now if /3true = 0.8, you'd get a ß as high as 
(or  higher than)  0.91   at  least gaufc[(0.9\ 
- 0.80)/0.28] = 35% of the time. The data do 
not force you to reject that hypothesis. 

Now if /3trUf> = 1.2, you'd get a ß as low as 
tor   lower   than)  0.91   at  least gauf[(0.91 
- 1.2)/0.28] = 15% of the time. The data do 
not really force you to reject that hypothesis. 

Often it is desirable to make as simple an 
assumption as the data will allow. That 
usually means to assume ß = 1 (exponential 
distribution) if the data will allow it. 

8-5 COMPARISON    WITH 
DISTRIBUTION 

LOGNORMAL 

The literature contains tables for testing 
the hypothesis about whether ß > 1 (in- 
creasing failure rate), ß = 1 (constant failure 
rate), ß < 1 (decreasing failure rate). Some 
tables are not valid if there is any kind of 
censoring. 

You must remember what such a test really 
does. It says, "Do the test data virtually force 
me to reject mv hypothesis?" If they do force 
you to reject the hypothesis (i.e., data as bad 
as  yours  rarely  would  be  obtained if the 

For 10 failures or less (or perhaps even 20 
failures or less) data sets from a Weibull and a 
lognormal distribution are virtually indistin- 
guishable from each other. It is not wise to 
use a goodness-of-fit test to find which is the 
better fit because neither one ought to fit the 
sample data very well; there is just too much 
scatter in small to medium size samples. This 
is an illustration of why it is not wise to 
extrapolate very far from the sample data. 
These 2 distributions will generally have quite 
different behavior in the right tail region. 
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CHAPTER 9 

LOGNORMAL DISTRIBUTION 

9-0 LIST OF SYMBOLS AM   } = i'th moment about the origin 

pdf = probability   density   function 
C — i-Confidence 

pmf = probability mass function 
Cdf = Cumulative distribution func- 

tion Pr{    \ = Probability 

C, L, U = subscripts that imply a 5-confi- 
dence level; C is general, L is 

PrD = Probability distribution 

lower, U is upper R = 5-Reliability 

CMt[   } = r'th central moment s- = denotes   statistical   definition 

Conf{   } = 5-Confidence level Sf = Survivor function 

CV{   } = coefficient of variation: 
StDvj   }IE{   } 

StDv{   } 

Varj    } 

= standard deviation 

= variance 

*1   > 
= s-Expected value 

X = sample mean 
.../ = suffix for base name, implies 

the Cdf a = scale parameter 

...fc = suffix for base name, i 
the Sf 

mplies ß 

T 

= shape parameter 

= random variable 
gau = base name for Gaussian distri- 

bution 

gaud = pdf for Gaussian distribution 

gauhr = hazard rate (failure rate) for 
Gaussian distribution 

Ign = base name for lognormal dis- 
tribution 

NCMt |   \     = normalized   j'th   central   mo- 
ment; CMi {   } /[StDv{    }]' 

{■;'},(•;■) = the fixed parameters are listed 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

= the complement, e.g., 0=1- 
0 where 0 is any probability 

9-1   INTRODUCTION 

This distribution is used occasionally for 
the  life  of semiconductors  and mechanical 
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parts. Part of its popularity is traceable to its 
relation to the s-normal distribution, and 
part is traceable to the non-negative character 
of the random variable. The basic name Ign is 
given to the lognormal distribution (for 
Jognormal). The suffix / implies the Cdf, and 
the suffix fc implies the Sf (complement of 
the Cdf). 

The 2-parameter lognormal distribution is 
always implied unless otherwise stated. 

9-2  FORMULAS 

a = scale parameter, a > 0 

ß = shape parameter, ß > 0 

T = random variable, T > 0 

pd/{r;a,^}=^^exp[-l/2[ln(r/ayJ]2] 

(9-la) 

-1-I1) 
■»(l/fl)\T/ v^(l/j3) 

-p[-./a(^)] 
(9-lb) 

= (ßlT)gaud[ßln(~^ (9-lc) 

where gaud is the Gaussian pdf; see Par. 5-1. 

Cdf{r,a,ß} =lgnf{Tloi;ß) (9-2a) 

/ lnr - Ina \ 

Sf{T;a,ß}=lgnfc(Tla;ß) (9-3a) 

, /lnr -lna\ =gaufc\-w~) 
= gaufc[ß\nQ] 

= gaufc[\n(^)~] (9-3b) 

failure rate {T; a, ß) = pdf{r; a, ß}/ 

Sf{T;a,ß)       (9-4aj 

= ßgauhr[ß\nfy] 

= ß gauhr\\n(*A? 1 

(9-4b) 

:ga«/ ['"©'] (9-2b) 

where gauhr is the Gaussian hazard rate 
(failure rate); see par. 5.2. 

~£ = exp[l/(202)] > 1 

E{r;a,ß) - ocB > a 

StDv{r;a, ß} = aB(B2 - 1)1/2 

CV{r;a,ß}=(Z?2-l)1/2 

CM3{r;a,ß} = a3B3(B2 - D2(B2 + 2) 

(-^=(-i)-[i-»+I!(-iy(,")^-»>] 

mode {r; a, ß) =a/B2 < a 

median {r;a, ß} = a 

Mode of failure rate occurs at (a/B2)^. y 
(0 <> < 1) is given in Fig. 9-5. The failure 
rate is zero for T = 0, then rises to a single 
maximum, and finally decreases toward zero. 
Fig. 9-1 shows the pdf, and Fig. 9-2 shows the 
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0 0.8 1.6 2.4 

(A)   FOR SHAPE PARAMETERS 1 

7.2 8.0 

TIME 

Q. 

0 0.8 1.6 

(B)   FOR SHAPE PARAMETER (3= 3 
TIME 

Figure 9-1.  Lognormal Distribution, pdf 
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failure rate, for several values of a, ß. Figs. 9-3 
and 9-4 are contour plots of the pdf and 
failure rate. 

There are several ways of putting the 
parameters into the lognormal distribution, 
but the common ones in the literature which 
use the symbols ß and a are confusing because 
fx and a do not stand for the mean and 
standard deviation of T, but for £nr. 

If a change of variable is made from r to 
Cnr, then Cnr has the s-normal distribution. 
See Chapter 5. 

It is possible to substitute (r - r0) for r, 
where r0 is called the "guarantee period", 
Ref. 1 (Chapter 5) discusses this case 
thoroughly. Unless there is a strong physical 
reason why T0 ought not to be zero, it is wise 

to   set   T0   =   0   and   deal   only   with   the 
2-parameter lognormal distribution. 

9-3 TABLES 

Tables of the lognormal distribution are 
virtually nonexistent. The Cdf and Sf are 
calculated easily using gauf and gaufc tables 
(standard ^-distribution), see Eqs. 9-2 and 9-3. 
The pdf can be calculated directly, or from 
the s-normal pdf using Eq. 9-1. 

9-4 PARAMETER ESTIMATION 

Only the 2-parameter lognormal distribu- 
tion is discussed here. The 3-parameter log- 
normal distribution [(r ~ T0) substituted for 
T] is not recommended unless there are 
compelling physical reasons to use it. Ordinar- 
ily, there are not enough data to estimate r0 

14 -r a = 0.3 

•ö 
Q. 

(3 = 10 

—I— 
4.8 

—I— 
5.6 

—1— 
6.4 

—1— 
7.2 8.0 

(C)   FOR SHAPE PARAMETER 0= 10 

Figure 9-1.  Lognormal Distribution, pdf 
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2- 
< 
in 

_l 

(A) FOR SHAPE PARAMETER ß= 1 TIME 

0 0.8 1.6 2.4 

(B) FOR SHAPE PARAMETER (3 = 3 

3.2 4.0 4.8 

TIME 

Figure 9-2.  Lognormal Distribution, Failure Rate 
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with any certainty at all. Often T0 is adjusted 
by an analyst to "straighten out" the graph 
on lognormal probability paper; this is very 
poor practice because sample Cdfs of reason- 
able size are rarely straight when plotted on 
the proper probability paper. See Ref. 1 
(Chapter 5) for parameter estimation of the 
3-parameter lognormal distribution. 

9-4.1  UNCENSORED DATA 

By far the most satisfactory procedure is to 
use x = ßnr. Then x is from a Gaussian 
distribution; see par. 5-3 for parameter 
estimation. 

ß=l/a (9-5b) 

where JU and a are the mean and standard 
deviations of x, respectively. 5-confidence 
statements about u and a will hold for the 
corresponding a and ß. 

Example. The following failure times were 
observed (all times are in hours). Assume a 
lognormal distribution. Estimate the param- 
eters. 

a: (9-5 a) 

566 2171 
625 2226 
1000 2638 
1073 2773 
1240 3781 

70-T 

60 

50- 

I- < 
cc 

X 

< 
u. 

FOR a = 0.3, PEAK VALUE (ABOUT 
100) OCCURS AT TIME * 0.8. 

a = 0.3 

ß = 10 

a = 0.3 

0 0.8 1.6 2.4 

(C) FOR SHAPE PARAMETER (? = 10 TIME 

Figure 9-2.  Lognormal Distribution, Failure Rate 

7.2 8.0 
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Procedure Example 

1. Calculate the logs (natural) of the failure 1. x= 7.322 
times (any base will give correct answers if it s =0.656 
it is used consistently) and find the sample N= 10 
mean x and s statistic. State sample size „ = 9 
and degrees of freedom. 

2. Calculate point estimates from Eq. 9-5 2. ä   = 1513 hr 
ß   =1.525 

a = eP- = ex 

ß =l/ä = l/s 

3. Calculate 90% symmetrical s-confidence 3. t Q 59= —1.833 
limits for a. Calculate then for /i first. Use t 9S'g   = + 1.833 
Eq. 5-5b. liL =7.322-0.380 = = 6.942 

HH = 7.322 + 0.380 = = 7.702 
aL = 1034hr 
aH = 2213 hr 

Calculate 90% symmetrical 5-confidence 
limits for ß. Calculate them for a first. 
Use. Eq. 5-6b. 

Conf { 1030 hr<a< 2210 hr } =90% 

4. (x2AOo 0 5   9    = 0.3694 = 0.60782 

(X2/^o.9s'9   = 1.8799= 1.37112 

'H 0.656/0.6078= 1.0792 
aL =0.656/1.3711 =0.4784 
ßH = 2.09 
ßL = 0.927 
Conf { 0.93 <j3< 2.1   }   =90% 

The uncertainty in a is more than a factor 
of 2, and in ß is more than a factor of 2. Thus 
the statistical analysis has shown how little we 
know about the distribution after taking this 
sample of 10. The actual data were a random 
sample from a lognormal distribution with a = 
1000 hr and 0 = 2. 

9-4.2 CENSORED DATA 

Maximum likelihood is complicated be- 
cause 2 simultaneous equations must be 
solved iteratively just as for the s-normal 
distribution. Ref. 2 shows how order statistics 
can be used. Ref. 1 also discusses this situa- 
tion. A statistician ought to be consulted. 

REFERENCES 

1. Mann, Schafer, Singpurwalla, Methods for 
Statistical Analysis of Reliability and Life 
Data, John Wiley & Sons, 1974. 

2. Sarhan and Greenberg, Contributions to 
Order Statistics, John Wiley & Sons, NY, 
1962. 
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CHAPTER 10 

BETA DISTRIBUTION 

AMCP 706-200 

10-0 LIST OF SYMBOLS NCMt [ ) 

B = beta function 
pdf 

bet = base name for beta distribu- 
pmf 

tion Pr{) 

betf = Cdf for beta distribution PrD 

betfc = Sf for beta distribution R 

C = s-Confidence r, n 

Cdf = Cumulative distribution func- <!- 
tion 

C, L, U = subscripts that imply a s-confi- 
dence level; C is general, L is 
lower, U is upper 

CM;\ \ = z'th central moment 

Conf { }        = ^-Confidence level 

csqfc = Sf for the chi-square distribu- 
tion 

CV{ } = coefficient of variation: 
StDv{ }/E { ) 

E { } = s-Expected value 

fisfc = Sf   of the Fisher-Snedecor F 
distribution 

gauf = Cdf for Gaussian distribution 

Ip - incomplete beta function 

Mt { } = ith moment about the origin 

normalized   ith   central   mo- 
ment; CM,\        }/[StDv{    }]' 

probability   density   function 

probability mass function 

Probability 

Probability distribution 

5-Reliability 

parameters 

denotes   statistical   definition 

Sf = Survivor function 

StDv{ } = standard deviation 

stufe = Sf   of the Student's redistribu- 
tion 

Var{  } = variance 

X = random variable 

a,ß = parameters 

V\,V2 = degrees of freedom 

\ ■;•},(• ;•)  = the fixed parameters are listec 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

the complement, e.g., 0=1- 
0 where </> is any probability 

implies use of the (r, n) param- 
eter set 
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10-1  INTRODUCTION 

This is sometimes used as a PrD for 
^-reliability since the random variable has the 
range 0 - 1. It also finds some use, in prin- 
ciple, as a prior PrD for Bayesian analysis 
of the binomial parameter. The base name bet 
is given to the beta distribution (for beta). 
The suffix / implies the Cdf, and the suffix fc 
implies the Sf (complement of the Cdf). Most 
of the formulas were obtained from Refs. 1, 
2, and 3 (many formulas appear all 3 places). 
The beta distribution is also called the incom- 
plete beta function. 

10-2 FORMULAS 

a, ß = parameters, a > 0, ß > 0 

x = random variable, 0 < x <  1 (for some 
values of a, ß the pdf is not defined 
at the end points) 

r, n alternate parameters, 0 < r < n (the 
restriction on n is more stringent than 
mathematically necessary) 

r = a, n=a + ß-\(r and n are usually 
restricted to non-negative 
integers) 

n sometimes is called a "scale" parameter 
and r a shape parameter 

B{a, ß) = is called the beta function. 
T(a + j3) 

pdf(x;a,ß} =xa~l{\ -x)ß~l jB(a, /}) 

for a, 0=^0 (10-la) 

pn,/(0;0,« = l , 
pdf {x\ 0, ß } = 0, for x*0) 

pmf{l;a,0) = l 

pdf{> 

pmf {0;0,0) =pmf {I; 0,0) = 1/2 

pdf {x; 0,0} = 0, forx¥=0 

■{l;o,0} = l )f > for a =F 0 
{jc;a, 0} = 0forx# l) 

pdf*{x;r,n) = xr~1(\ -x)"-rr("Y 

forr> 1 (10-lb) 

pm/*{0;0,n} = l 

pdf*{x;0, n) =0forx^0 

Cdf{x;a,ß} = IX(OL, ß) = 1 -Iv.x(ß, a) 
(10-2a) 

Cdf* {x;r, n} =Ix(r,n-r+ 1) 

= \-I1_x(n-r+l,r) 

= betf*(x;r,n) (10-2b) 

Sf{x; a, ß) = 1 -Ix(a, ß) = I,_ x{ß, a) 
(10-3a) 

Sf*{x;r,n) = l-Ix(r,n-r + 1) 

= /i -x(n-r+ \,r) 

= betfc*{x; r, n) (10-3b) 

E{x;a,ß) =a/(a + /3) 

E*{x;r,n} =/•/(«+ 1) 

StDv{x;oc,ß}=-^—\—^--] 
a + ß La + |3 + lJ 

*, ,        1     rr(n + l-r)V/2 

StDv* {x; r.n) =  ~ x •  •   '    n + I I     n + 2     J 

,   r      ß     "T2 
CV{x;a,ß} = \  v        Hl    La(a + ß+l)J 

CV*{x;r,n) =\   X       '   LK« + 2)J 

CM3{x;a,ß} = 

CMt{x;r, n) = 

2aj3(j3 - a) 

NCM 

(a + |3)3(a + /3 + l)(a + 0 + 2) 

Irin + 1 - r)(n + 1 - 2r) 
(n + l)3(« + 2)(« + 3) 

-    2(0-tt) fa + J3 + 1 "l1 /        «v       2(0-a) ra + ß+1-l /2 
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NCMt {x;r, n) = 
2(» + 1 - 2r) 

n + 3 

« + 2     V'2 *r w+2 r 
Lr(«+ 1 -r)J 

mode {x; a, 0} =(a- l)/(a + j3-2) 

mode* {*;/-, «} = (r- l)/(n- 1) 

median {x; a, ß} «= (a - 0.3)/(a + /3 - 0.6) 

median*{x; r, n) * (r - 0.3)/(« + 0.4) 

The beta distribution is related to other 
distributions as follows: 

n 

E("Wn-'=/p(r.H->-+l) 
i = r V ^ / 

= betf*(x; r, n)        (10-4) 

lsru/c(r;v)l = /_(v/2, 1/2),   x = W(f+'2) 

fisfc(F;v1,u2) = Ix(vil2,vll2), 

v., + v.F 

(10-5) 

(10-6) 

Fig. 10-1 shows some graphs of Eq. 10-la. 
Fig. 10-2 shows some graphs of Eq. 10-lb. 

10-3 TABLES 

Ref. 4 is an extensive set of tables of Eq. 
10-4. Other tables are given in Refs. 5 and 6. 

Ref. 2 has tables, a chart, and a discussion of 
the distribution. 

Ref. 1 (formulas 26.5.20 and 26.5.21) has 
two approximations for calculating Ix . 

For(a + 0-l)(l-x)<O.8, 

ix(
a,ß) = cs<iMx2;2ß) + e 

lei < 0.005, ifa + 0> 6 

x' = (a+ /J-l)(l -x)(3-x)-(l-jt)(0-1) 

(10-7) 
/JC(a,/3) = gau/(>') + e 

|e|< 0.005 ifa + /3> 6 

>" = 
90' 

L  3 a   J 

1/2 

w, = (0x)1/3,   w2 =[a(l -x)]1'3.   (10-8) 

Eq. 10-8 is related to Eq. 6-24. No tables are 
included in this Handbook series. Eq. 10-6 
and Table 6-4 can be used. 

10-4 PARAMETER ESTIMATION 

There are no simple good estimation proce- 
dures. The method of moments is reasonably 
straightforward but does not readily allow an 
estimation of the uncertainties in the param- 
eter estimates. 
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(A) a = 0.1 ;(3 = 0.1,0.9, 1,2 

6.0 -r 

( *       r<a + 0)      r „   1 
ix.a.ß)  =        x«-l(l-x)M 
' '      r (a) r ((3)  L J 

(B)  a= 1; (3 = 0.5, 1,2, 5 

Figure 10-1.  Beta Distribution 
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4.0- 

IC) a = 2; 0 = 0.1, 1,5, 10 

I ]      ria + 0)     r 1 
pdf \x,a,ß } xr-l (l-x)"-1'-1 

I I    rWrwL J 

(D) a = ß= 1.2, 4, 8 

Figure 10-1.   Beta Distribution (Continued) 
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6.0 

pdf'Un.r] —     [V"1   M-x)"^1 1 
• '       T (r) r (n ■ r)     [_ J 

<A)#i-7;/--1,2,3,5 

6.0-r 

5.0- 

4.0- 

^f.{Ji;(,.,i-_-LiL_rJ,M(1.J„^i] 
' '     r M r (/)-/•) L J 

Q. 

3.0- 

2.0- 

1.0- 

(B) n - 11;r- 1. 2,3,5 

Figure 10-2.   Beta Distribution (alternate parameters) 
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CHAPTER 11 

GAMMA DISTRIBUTFON 
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11-0 LIST OF SYMBOLS 

C = s-Confidence 

Cdf - Cumulative distribution func- 
tion 

C, L, U = subscripts that imply a s-confi- 
dence level; C is general, L is 
lower, U is upper 

Conf { )       = ^-Confidence level 

CMj { } = ith central moment 

csqf = Cdf for chi-square distribution 

CV {  } = coefficient of variation: 
StDv{ }/E{ } 

E {  ) = s-Expected value 

gam = base name for gamma distribu- 
tion 

gamf = Cdf for gamma distribution 

gamfc = Sf for gamma distribution 

gaufc - Sf for Gaussian distribution 

A/,- { } = /th moment about the origin 

NCMj{ \ . = normalized /'th central mo- 
ment; CM,-{ }   /[StDvj }]' 

pdf = probability   density   function 

pmf = probability mass function 

Pr{ } = Probability 

PrD = Probability distribution 

R = 5-Reliability 

s- = denotes   statistical   definition 

Sf = Survivor function 

StDvl  } = standard deviation 

Var{ } = variance 

a = scale parameter 

ß = shape parameter 

r = gamma function 

T = random variable 

{■;•}■(•;•) = the fixed parameters are listed 
to the right of the semicolon, 
the random variable is listed to 
the left of the semicolon 

= the complement, e.g., 0 = 1- 
0 where 0 is any probability 

11-1   INTRODUCTION 

This is the distribution actually used in 
some of the exponential distribution exam- 
ples when there is more than 1 failure. It is 
related closely to the chi-square distribution. 
The base name gam is given to the gamma 
distribution (for gamma). The suffix/implies 
the Cdf, and the suffix fc implies the Sf 
(complement of the Cdf). The gamma distri- 
bution is also called the incomplete gamma 
function. 

11-2  FORMULAS 

a = scale parameter, a > 0 

11-1 
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ß = shape parameter, ß > 0 

r = random variable, r > 0 (if ß < 1, 

then r > 0 for the pc?/) 

prf/{r;.a, ß) = (l/a)<r(T/a>(r/a)'3- l/r(ß) 

(11-1) 

Cdf{r; a, ß) = gamf(r/a;(3) Cl 1-2) 

S/ {T; a, ß} = gam/c (r/a; ß) (11-3) 

£{r;a,/3} = aß 

StDv{r;a, 0} =asfß~ 

C\{T-a,ß) = l/Sß~ 

CM3{r;a,ß} = 2a30 

NCM3{r,a,ß} = 2/v^ 

gamf(x2/2;v/2)     = csqf(x2W) 

E{r";a,ß) 
[E{T-a,ß)] "= (1 + 1/0X1+2/0)- 

*('♦ "-/)■» > 1 

mode {7";a, 0} = 
a(0-l), 0> 1 

0, otherwise 

median (r; a, ß) «* a(0 - 0.3) 

Miscellaneous formulas are 

gamfir/a; ß + 1) = gamfir/a; ß) 

+ x<3e-x/[r(ß+ 1)] 

for v a positive integer 

(11-5) 

'/>;/•} = £(*-")#, 

(11-4) 

for r a non-negative integer 

(11-6) 

Fig. 11-1 shows a few values of the pdf. 
Fig. 11-2 is a contour plot of the pdf. Many 
of the formulas in this chapter are adapted 
from Ref. 1. 

11-3 TABLES 

Tables of the gamma distribution are not 
very common. Refs. 2 and 3 are two of the 
few extensive tables available. Of course, 
chi-square tables can be used when ß is a multi- 
ple or Vi (see Eq. 11-5). No tables are included 
in this volume. 

Eq. 11-7 and its inverse are useful for 
approximating the gamma distribution 

(11-7) 

where 

gaufc(zQ) = Q 

gamfc(uQ 0;ß) = Q 

11-4 PARAMETER ESTIMATION 

Rarely does one wish to estimate both 
parameters of the gamma distribution. If ß is 
known, the estimation is straightforward—see 
the exponential distribution (Chapter 7). 
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5.0- 

4.0- 

0 = 0.3 

3.0- 

2.0- 

1.0- 

—I— 
1.4 

=!= 

3.5-r 

3.0-! 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

(A)   SHAPE PARAMETER 0 = 0.3. TYPICAL OF ALL 0< 1. (ASx-> 0+, THEpoffs-> °°). 

0 = 1 

(SAME AS EXPONENTIAL DISTRIBUTION, WHERE a- 1A 

1.8 

X 

0.5 1.0 1.5 

(B)  SHAPE PARAMETER 0 = 1. THIS IS THE EXPONENTIAL DISTRIBUTION; SEE FIG. 7-1. 

Figure 11-1.  Gamma Distribution, pdf 

—r 
2.0 

5.0 
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1.0- 

0.8- 

Q. 
0.6- 

0.4- 

0.2- 

(C) SHAPE PARAMETER ß = 3. TYPICAL FOR ALL ß > 1. 

Figure 11-1.   Gamma Distribution, pdf (Continued) 

If both parameters must be estimated, 
consult a statistician. Be sure to estimate the 
uncertainties in the parameter estimates. 

11-5 GAMMA FUNCTION 

The gamma function appears many places. 

ros) ■r e-uu^-idu (11-8) 

See Ref. 1 (Chapter 6) for many characteri- 
stics and tables of this and related functions. 
Table 11-1 can be used to find T(j3). 
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TABLE 11-1 

GAMMA FUNCTION 

n\ " T {n + 1), for n an integer 
r(/3 + i) = 0r(0) 

riß + n)-[ß + n--\)[ß+n-2)...ßriß) 

ß riß) ß n/3) ß n/3) ß ri/3) 

1.00 1.00000 1.25 0.90640 1.50 0.88623 1.75 0.91906 
1.01 0.99433 1.26 0.90440 1.51 0.83659 I.76 0.92137 
1.02 0.98884 1.27 0.90250 1.52 0.83704 1.77 0.92376 

1.03 0.98355 1.28 0.90072 1.53 0.88757 1.78 0.92623 
1.04 0.97844 1.29 0.89904 1.54 0.88818 1.79 0.92877 

1.05 0.97350 1.30 0.89747 1.55 0.88837 1.80 0.93138 
1.06 0.96874 1.31 O.80600 1.56 0.88964 1.81 0.93408 

1.07 O.96516 1.32 0.89464 1.57 0.89049 1.82 0.93685 
1.08 0.95973 1.33 0.89358 1.53 0.89142 1.83 0.93969 
1.09 0.95546 1.34 0.89222 1.59 O.89243 1.84 0.94261 

1.10 0.95135 1.35 0.89115 1.60 0.89352 1.85 0.94561 

.1.11 0.94739 1.36 0.89018 1.61 0.89463 1.86 0.94869 
1.12 0.94359 1.37 0.83031 1.62 0.39592 1.37 0.95184 

1.13 0.93993 1.38 0.88354 1.63 0.39724 1.88 0.95507 
1.14 0.93642 1.39 0.88785 1.64 0.89864 1.89 0.95838 

1.15 0.93304 1.40 O.88726 I.65 0.90012 1.90 0.96177 
1.16 0.92980 1.41 0.88676 1.66 O.90167 1.91 O.96523 

1.17 O.92670 1.42 O.88636 I.67 0.90330 1.92 O.96878 

1.18 0.92373 1.43 0.83604 1.68 O.90500 1.93 0.97240 

1.19 0.92088 1.44 O.88580 I.69 O.90678 1.94 0.97610 

1.2Q 0.91817 1.45 O.88565 1.70 0.90364 1.95 0.97983 

1.21 0.91558 1.46 O.88560 1.71 0.91057 I.96 0.98374 

1.22 0.91311 1.47 0.83563 1.72 0.91258 1.97 0.98768 

1.23 0.91075 1.48 0.88575 1.73 0.91456 1.98 0.99171 

1.24 0.90852 1.49 0.88595 1.74 O.91683 1.99 
2.00 

0.99531 

1.00000 
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CHAPTER 12 

s-CONFIDENCE 
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12-0 LIST OF SYMBOLS 

C = «-Confidence level; or sub- 
script that implies such a level 

c = \-C 

Cdf = Cumulative distribution func- 
tion 

Conf {   } = «-Confidence level 

gib = greatest lower bound 

LCL = lower «-confidence limit 

L, U = subscripts implying lower and 
upper «-confidence levels and 
limits 

lub = least upper bound 

A' = sample size 

pdf - probability   density   function 

pmf = probability mass function 

PrD = probability distribution 

r = integer random variable 

«- = denotes   statistical   definition 

Sf = Survivor function 

t = t statistic 

UCL = upper «-confidence limit 

v 

X2lv 

= random variable from uniform 
distribution 

=   1 -77 

= parameters about which a 
s-confidence statement is to be 
made 

= degrees of freedom 

= chi-square/nu statistic 

= implies a point estimate of a 
parameter 

12-1   INTRODUCTION 

«-Confidence is one of the first difficult 
statistical concepts an engineer needs to grasp. 
«-Confidence is to statistics as entropy is to 
physics. «-Confidence and entropy are basic 
concepts that must become familiar in their 
own right; it is almost impossible to under- 
stand them in terms of more-basic concepts. 

This chapter applies to the common situa- 
tion where the parameters in a PrD are not 
random variables themselves; rather they are 
fixed, usually-unknown quantities. If the 
parameters are random variables (irrespective 
of the meaning attached to probability), the 
situation is handled by a Bayesian technique 
(see Chapter 16). 

Parameters in a PrD are considered to be 
fixed nonrandom quantities. Probability state- 
ments that contain a parameter cannot imply 
that the parameter itself is a random variable. 

12-1 
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A s-confidence statement is generated by an 
algorithm (computational procedure) which 
is specified in advance of the experiment. 
Examples of such procedures are given in the 
paragraphs that follow. It is presumed that all 
functions and PrD's are well-behaved enough 
for the concept of ^-confidence to be easily 
and unambiguously applied. Such is the case 
for the PrD's usually used in reliability work. 

Eq. 12-1 shows one kind of expression 
which can be used to generate useful s-confi- 
dence statements. 

(x - n)/s = tv 

s2/o2 ={xllv)v 

(12-la) 

(12-lb) 

where x and 5 are the sample-mean and s 
statistic, respectively, of a fixed-size sample 
from a «-normal distribution with mean n and 
standard deviation a; 

e/e=(x2Mv (12-lc) 

where 6 is the sample mean-life of a 
fixed-size (fixed number of failures) sample 
from an exponential distribution with scale 
parameter (mean life) 0. 

Each expression in Eq. 12-1 contains on 
the left: 

(1) Only 1 unknown parameter from the 
PrD, and 

(2) Sample statistics, i.e., quantities calcu- 
lated from the sample data. 

Each quantity on the right in Eq. 12-1 is a 
statistic whose PrD can be determined with- 
out regard to the PrD parameters or to the 
random data although it may depend on such 
things as the fixed sample size. Both t and 
X2/^ have well-known PrD's (see Chapter 6) 
and depend on the sample size through v. 

Eq. 12-2 is another kind of expression that 

can be used to generate useful «-confidence 
statements. 

r = cß (12-2) 

where r is the number of failures observed in a 
sample from a Poisson distribution with 
parameter ju, and cM has the Poisson distribu- 
tion with parameter ß. 

The remainder of this chapter is limited to 
those cases for which: 

(1) There is only 1 unknown parameter. 

(2) There is a single «-sufficient statistic. 
(Examples of «-sufficient statistics are the 
number of failures in N tries for a binomial 
distribution, the number of events for a 
Poisson distribution, and total-test-time to 
achieve r0 failures for the exponential distri- 
bution.) 

(3) The situation is well-behaved enough 
that no difficulties are involved in making 
«-confidence statements. 

The cases considered here have a simple 
geometric and analytic interpretation. Consult 
a competent statistician or a good reference, 
e.g., Ref. 2 (Chapter 20), for a discussion of 
other cases. 

Suppose the single parameter in a PrD is 0 
and an estimate of <t>, from a sample, is 0. 
Examples are 

(1) Exponential distribution: parameter = 
scale parameter 0; estimate, 6 = T/r0 where T 
is total-test-time for rQ failures. 

(2) Poisson distribution: parameter = mean 
number of events, n; estimate, p. = r where r is 
the observed number of events. 

(3) Binomial   distribution:    parameter   = 
probability of an event p; estimate, p = r/N 
where r is the observed number of events in N 
trials. 
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0 is a random variable because it depends 
on the sample data. The procedure for making 
a 5-confidence statement is as follows: 

(1) Take the random sample and calculate 
0 from the data. 

(2) Use the algorithm to generate another 
statistic <j>c which will be a ^-confidence limit. 
0C is a random variable; it is calculated from 
the sample data. 

(3) Make a s-confidence statement. It will 
use Conf | ■ } rather than Pr { • \ to denote 
probability. The Conf { • \ implies that the 
parameter is unknown and that a value of the 
random variable 0C has been calculated from 
the data. Conf { • } is interpreted as the frac- 
tion of times such a statement will be true when 
these 3 steps are followed. 
Conf {</><0c> =C. 

The procedure often is extended by calcu- 
lating 2 values of 0C (<t>L and <pv) such that 
the 5-confidence statements are 

Conf{0< 0^} =CV (12-3a) 

C, (12-3b) Conf{0<0i} 

Conf{01 < 0< <t>v) =CU-CL .     (12-3c) 

CL is usually small (say 5%) and Cu is usually 
large (say 95%). Notation for ^-confidence 
statements is not at all standard; so particular 
attention must be paid to the example forms 
(Eq. 12-3). 

Suppose one is estimating the exponential 
parameter 0 by means of a continuous ran- 
dom variable 0 = T/r0. (T is the total 
operating time to the predetermined fixed 
number of failures r0.) Suppose a s-confi- 
dence limit 0C is calculated at a ^-confidence 
level C. 8C = 0C(0, O; then, 8C is a function 
of 0 and C. The statement 

means that if a 0 is found, and C is given, the 
statement 6 < 0C(0,C) will be a true fraction C 
of the time, regardless of the true value of 6. 
The reason this can be so is that 6C is selected 
so that the statement "0O < 6C (0, Q" is true 
a fraction C of the time for any particular d0 

and C, for all random samples from the PrD 
with that parameter 0O. Since it is true for 
any particular 0O, it is true regardless of the 
value of 0. 

When the PrD is discrete, the ^-confidence 
statements are usually of the forms 

Conf{0< 0C + (0,C)} > C 

Conf{0< 0C_(0,C)} < C. 

(12-4b) 

(12-4c) 

This situation is discussed further in Par. 12-3. 

In statistical papers, the concept of s-confi- 
dence often is modified slightly so that Eq. 
12-4b is written Conf { 0 < 0c+(0, C) } = C. 
This is confusing to nonengineers. This hand- 
book series always makes the inexact s-confi- 
dence statements in the form of Eqs. 12-4b 
and 12-4c. 

12-2   CONTINUOUS 
ABLES 

RANDOM    VARI- 

"Conf{0< 0C(0,C)} =C" 

Fig. 12-1 graphically shows how .s-confi- 
dence limits are derived. 

i-Confidence statements need not have the 
inequality as in Eq. 12-3a, b. They can be of 
the form in Eq. 12-5. But the form in Eq. 
12-5 is not used in 1-sided .s-confidence 
statements in this chapter because it would 
further complicate an already complicated 
notation. 

Conf {0>0*c(0, O } = \-C      (12-5) 

Fig.  12-1 is a contour plot of Sf {8;d }; 3 
contours are shown, Sf = 10%, Sf = C, Sf = 
90%. The algorithm for finding 0f(3, C) is to 

(12-4a) choose  0C(0,  Q such that Sf{6;8c }   = C. 
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AMCP 706-200 

Conf   (e *    0   (Q,C);Q,C}  = Sf {Q;Q\ = C 
C 

6C<6,C) 

Figure 12-1.  ^-Confidence Diagram: Continuous Random 
Variable 6 (for well-behaved situations) 
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That is, pick 0C equal to the 0 that corres- 
ponds to 0 on the Sf=C contour. 

6C is a random variable; it is calculated 
anew each time a 0 is estimated. 

The algorithm can be checked in the 
following way from Fig. 12-1. Suppose 0 is 
fixed at 0O and that many samples are 
drawn-each sample yields a 0. If 0 <0O, say 
0 = 0,, the statement "0O <0C" will be false 
because 0C = 0[ < 0O. If 0 > 0 say 0 = 02, 
the statement "0„ < 0r" will be true because 
0 the   nature   of  the - > ?»■ .By 
construction, "0 > ö0"is true a fraction C of 
the time, i.e., Sf{d0;6c) = C. "Since the 
s-confidence statement is true for any 0O, no 
matter what its value, it is true for any 0. 
Thus the s-confidence statement is: 

Conf{0<0c (0, C)} = C (12-4a) 

where 0C(0 , C) is a random variable. A 
common misunderstanding is to assume that 
0C is not a random variable and to want the 
statements to hold true, assuming some sort 
of distribution of 0. 

.s-Confidence is a difficult concept. It 
doesn't really answer an engineer's question, 
"How much engineering confidence do I have 
in the answer?", but it does respond to a 
question the statistician can answer. 

Suppose there are 2 ^-confidence limits, dv 

and 61 such that 6V >6L; then 

Conf {dL(d,   CL)   < 0   < 6U   (0, Cv)} 
= C, C, (12-6) 

This  can  be seen either graphically by the 
construction in Fig. 12-1 or analytically. 

12-3 DISCRETE RANDOM VARIABLES 

s-Confidence statements (and their deriva- 
tions) are more difficult for discrete random 
variables   than   for   continuous   ones.   The 

Poisson distribution (parameter p) is a good 
example of a discrete random variable, and is 
the basis for the explanation in this para- 
graph. The discussion is valid for other dis- 
crete distributions, e.g., the binomial distribu- 
tion. 

Fig. 12-2(A) shows contour plots of the 
Cdf and Sf. The PrD is defined only for the 
discrete values of r. The dashed lines serve 
only to guide the eye from one point to a 
related point. The spacing between consecu- 
tive r's is irrelevant, as is the shape of the 
dashed lines. No Sf contour (other than 
100%) is defined at the left boundary, and no 
Cdf contour (other than 100%) is defined at 
the right boundary. The Poisson variable r has 
no right boundary; the binomial variable r has 
a right boundary at r = N. N will be used to 
denote maximum value of r; for the Poisson 
distribution, N -*■ °°. Mmax will be used to 
denote maximum value of ß. 

For a given n and C, rCß is defined such 
that 

(1) Cdf{rCll;n}> C, 

and 

(2) Sf{rCß,p} >C. 

(12-7 a) 

(12-7b) 

It helps to visualize rCfi from Fig. 12-2(A). 
Just find the value of r for which \x lies 
between the 2 contours. If rCß is a boundary, 
one of the 2 contours will not be defined 
there; but Eq. 12-7 will be satisfied since at 
the right boundary the Cdf \r, n\ = 1 for 
any (r, p); and at the left boundary the Sf {r, 
HI   =1 for any r, p. 

Define MC+ = lub {M/ rCß} (12-8a) 

Pc-sglb{M/rCjl|} (12-8b) 

where lub means "least upper bound" and gib 
means "greatest lower bound". 
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On Fig. 12-2(A), Eq. 12-8 means to move ß 
up until it intersects the "Cdf = C contour" 
(for Mc+) and then down until it intersects the 
"Sf= C contour" (for ßc_ )■ 

It can readily be shown that /ic_ and fic+ 

are defined, for each r, by 

Cdf{r;nc+} =Q  for r*N (12-9a) 

Mc+ =Mmax> forr = N 

Sf{r; fxc_) = C,  for r * 0 (12-9b) 

ßc- ~ 0> for r= 0 

where each r is interpreted as the rCM in Fig. 
12-2(A). 

Fig. 12-2(B) shows how the pc_ and ßc+ 
look for several values of r. The ßc _ for one 
value of r is the juc+ for the previous value, r 
- 1, except at the endpoints. 

By the nature of the construction of Fig. 
12-2, the following s-confidence statements 
are appropriate. 

Conf{n< ßc + (r,C)} >C (12-10a) 

Conf{/x < ßc_(r, C)} <C (12-10b) 

Thus the + on ßc+ shows an excess of 
5-confidence the ~ on pc_ shows a deficit 
of ^-confidence. 

Suppose there are 2 i-confidence levels, Cu 

and CL such that CU>CL. Then the levels can 
be combined as follows: 

Conf{ßL_{r, CL)< M < ßu+(r, Cv)) 

>Cu-CL    (12-1 la) 

Conf(Mi + (r, CL) < ju < Hv_(r, Ca)} 

^Cu-CL   (12-1 lb) 

Eq. 12-1 la is favored by statisticians because 
the s-confidence is at least the desired 
quantity. It is the one given in virtually all 
reliability texts and articles. 

Eq. 12-9 shows that when the Cdf and Sf 
are complementary, the i-confidence bounds 
(+ and -) come together as in Par. 12-2. 

12-4 DISCRETE    RANDOM   VARIABLES, 
EXACT CONFIDENCE BOUNDS 

It appears to be foolish to use the worst 
case .s-confidence bounds always, because 
obviously they are always further apart than 
need be. A method, generally attributed to 
Ref. 1, is available for generating a i-confi- 
dence interval that is exact. The basic idea is 
to generate a random variable and then, 
according to its value, choose a pc between 
ßc_ and Mc+ sucn tnat the s-confidence 
statement is exact. 

For a given ß (and rCß =£ 0, TV) the 
statement ß < ßc (for ßc_ <ßc <ßc+) will 
be true for r = 1, ... , rCii - 1 and sometimes 
for r = rCli, as shown in Fig. 12-2(A). Suppose 
for a fixed ß we calculate the number rjCß 

between 0 and 1 such that 

C =pmf{0;ß} +pmf{\;ß) +pmf{2;ß) 

+ ••• + pmf{rCß-\;ß} + T)Cßpmf{rCß; ß} 

= pmf{0;ß) + '•' +pmf{rCß; ß} 

-(1 -VCß)Pmf{rCn'H) 

= Cdf{rCß;ß} -(1 -■nCti)pmf{rCß;ß), 

foir^0,N;     (12-12a)r 

C = Sf{rCß;ß) -"c\Cßpmf{rCß;ß), 

forr^Q,N.     (12-12b) 
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It is easy to solve for TJC. For r = 0,N; Eq. 12-15a becomes 

.    Cdf{rCii;n)-C 

pmf{rc ;n) c" 

(12-13a) 

n    pmf{0;nc}   ' 

fxc = 0, for 

for T) > C | 

f or T? < C ) 
forr = 0; 

(12-15b) 

_Sf{rCli;a)-C 
pmf{rCli;ti) 

JoTrCß*Q,N 

(12-13b) 

To   use   this   for   a   J-confidence interval 
statement, choose an 17 from the uniform 
distribution on [0, 1). Then use Eq. 12-14 or 
15 to calculate a juc (r, Q 77). 

Cdf{r,tic}-C 
"*   pmf{r-{ic)      (defines MC), 

forr#0, N    (12-14a) 

(12-15a) 

The reason either Eq. 12-14a or 15a can be 
used is that the pdf of 77 and 1 - 17 are the 
same. 

For rCll = 0, N; Eqs. 12-12 and 12-13 become 

C = r\Cllpmf{ 0; n } , for r)C(l > C 

M = 0, forr?CM < C 
■forr = 0; 

(12-12c) 

C = r\cllbmf{N;ii\t forT}c„<C 

M = M„ for T?C„ 
_ > for r = N . 

>C) 

"mpntf{N;ß)    'forT^ 

A*C = ^max , for 77 

4-i > C) 
for r = N. 

(12-15c) 

(12-12d) 

Equations corresponding to Eq. 12-15b and 
12-15c follow from Eq. 12-14a. 

To show that the pc (r, C, 77) from Eq. 12-15 
satisfies the proper s-confidence statement, 
we calculate Conf { /u < juc J   . For r =£ 0, N: 

'>< nc(r,C,r,)" if "[r> rCtl] or 

[[r = rcJ] and [77 > r)Cfl]]" (12-16) 

Conf{ju< nc) = [Sf{rClt;p} -pm/{rft;/j}] 

+ lpmf{rCll;p)xSf{r,Cli}] 

= Sf {rCli; p) -pmf{rCll;p)x Cdf {TJCM} 

= sf{rCv>v} -pmf{rCß;p}x rjCll 

(because 77 has the uniform distribution) 

= C  (from Eqs. 12-12b and 12-13). 

(12-17) 

If r = 0, N: Conf {p < pc \ = C follows 
directly from Eqs. 12-12c, 12-12d, 12-15b, 
and 12-15c. 

Unfortunately Eqs. 12-14 or 15 are not 
simple to solve. Thus special tables must be 
generated for this method to be useful. Such 
tables   have    been   generated    for   2-sided 

12-8 



AMCP 706-200 

Ä-confidence intervals for the binomial param- 
eter p, and the Poisson parameter ß. 

The traditional literature that explains this 
concept tends to use (r + r)Cß) as the variable. 
This renders the understanding more difficult. 
Although if n is plotted vs (r + I?CM), a 
continuous curve results which resembles Fig. 
12-1. 

12-5 MORE      COMPLICATED     s-CONFI- 
DENCE SITUATIONS 

Easy ^-confidence statements are feasible 

for more complicated situations such as Eqs. 
12-la and 12-lb because it is easy to generate 
the appropriate random variable. 

Joint 5-confidence statements for several 
parameters in a PrD are very complicated, and 
are virtually impossible to make in any 
practical situation. 

It is fairly easy to find pathological 
situations where the explanation of s-confi- 
dence given in this chapter does not apply. 
Those situations rarely, if ever, arise in 
reliability engineering. 
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CHAPTER 13 

PLOTTING POSITIONS 

13-0 LIST OF SYMBOLS 

Cdf = Cumulative distribution func 
tion 

Conf{•} = s-Confidence level of  { • } 

H = cumulative hazard 

i = ordered failure number, / = 1, 
.. .,N 

j = reverse order statistic, /' = N, 
..., 1 

K-S = Kolmogorov-Smirnoff 

N = sample size 

PrD = Probability distribution 

s- = denotes statistical definition 

5/ = survivor function 

13-1 INTRODUCTION 

Any graphical method of analyzing sample 
data requires a plotting position for each 
sample point, i.e., the probability to be 
associated with each data point must be 
determined. There is no "right" method. 
Some are more convenient than others; some 
show the uncertainties in the data better; and 
some have been shown to have special statisti- 
cal properties. 

Graphical methods are not precise;- they 
contain a great deal of subjectivity and 
nonrepeatability. These characteristics are not 

necessarily bad, but they must be recognized. 
For example, if greatly different answers are 
obtained from each of the popular plotting- 
position methods, then the data analysis is in 
trouble regardless of the plotting-position 
method. Generally speaking, the uncertainties 
due to small sample size swamp out the 
uncertainties due to the various plotting 
positions. 

Plotting positions that use only point esti- 
mates ought to be avoided, since a most 
important use of statistics is to estimate the 
uncertainty in an answer. The two methods 
(mentioned here) which encourage estimates 
of the uncertainty are the sample Cdf (with 
K-S limits) and the percentile ranges. 

When sample distributions are plotted it is 
often convenient to use one of the special 
probability papers such as ^-normal or 
Weibull. Even if the theoretical PrD will not 
be a straight line on the paper, the special 
paper usually makes the theoretical PrD 
straighter than it would have been on linear 
paper. 

13-2 SAMPLE Cdf 

Notation: 

N = number of items put on test 

/   = the ith order statistic 

d = Kolmogorov-Smirnoff statistic 

Failure i is plotted at a probability of i/N. 
For example, if N = 10, the second failure (i = 
2) is plotted at 20%. 
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The uncertainty in plotting position is 
introduced by means of the K-S statistic. See 
par. 14-3 for an explanation of this statistic 
and tables for its use. In Chapter 13 the 
plotting position is considered to lie between 
"(UN) + d" and "(i/N) - d". If N = 10, and 
the desired s-confidence level is 90%, then d = 
0.368. Thus failure #4 would be plotted in 
the range "0.400 - 0.368 = 0.032" and 
"0.400 + 0.368 = 0.768". The following 
s-confidence statement is true for all i, irre- 
spective of the actual PrD. 

Confix-dQN<Cdf{Xi} 

N + d 

where 
(13-1) 

Xj = ith order statistic 

C = s-confidence level 

^c, N~ K-S statistic for sample size N and 

«-confidence C 

Because i/N ~dc N and i/N + dc N often can 
lie outside the interval [0, 1 ], the limits often 
are written as 

lower limit = max < 0,  jr - dc y>   (13-2a) 

upper limit = min < 1 i 
N + d, ..) (13-2b) 

As shown in the example in this paragraph, 
for N = 10, /' = 4, the 90% s-confidence limits 
are 0.032 and 0.768. They are discouragingly 
wide. They show why it doesn't pay to fool 
around trying to get the best fit to the sample 
data-the sample data rarely fall on the true 
PrD very well at all. 

Statisticians occasionally recommend not 
using this test because it is so broad and is 
especially discouraging in the tail region. But 
their alternatives assume that much more is 
known about the data than is usually the case. 

The sample Cdf with K-S limits is always a 
very sobering method for plotting probability 
data. See Part Three for more detail. 

13-3 PERCENTILE RANGES 

The PrD of order statistics is well known 
(see Chapter 10). It is useful to use percentiles 
of this PrD for plotting positions. Table 13-1 
gives these plotting positions for the 5th, 
50th, 95th percentiles. It covers many values 
of n. These percentiles refer to the s-confi- 
dence that any one true value will fall within 
the range. They are not joint «-confidence 
levels. 

These bands of uncertainty are discourag- 
ingly wide. They illustrate how little is known 
from a sample and how important it is to 
make interval estimates. This method requires 
large tables; so, often the sample Ctf/with K-S 
limits (see par. 13-2) is preferred. 

The median (50%) plotting position often 
is used by itself when quick plotting must be 
done. For example, one may wish to get a 
starting value for an iterative analytic solu- 
tion. The median plotting position is given 
approximately by Eq. 13-3. 

PPS0%*(i-0.3)/(N+0A) (13-3) 

where 

N = sample size 

/   = ordered failure number 

Eq.   13-3 is much more accurate than (i - 
0.5)/N which is occasionally used. 

13-4 MEAN 

The PrD of the ith order statistic (men- 
tioned in Par. 13-3) has a very simple mean 
that often is used as the plotting position 
when quick results are desired (usually to be 
followed by a more precise complete analytic 
solution). The mean plotting position is given 
byEq. 13-4. 
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PPn i/(N+l) (13-4) 

13-5 CENSORED DATA (HAZARD PLOT- 
TING) 

the observed hazard rate 1//. The cumulative 
hazard Hj is calculated for each failure by 
summing the 1// (for failures only) up to and 
including the failure. The plotting position is 
then 

If the data are simply censored by stopping 
the test, then Pars. 13-2, 13-3, or 13-4 can be 
used for plotting positions. If the censoring 
occurs among the failures, then it is extremely 
difficult to find the PrD of failure times. 

Hazard plotting was developed for this 
situation (credit is usually given to Wayne 
Nelson). The items are listed in order of their 
censoring and/or failure times (intermingled). 
They are given the reverse order statistics / 
(from N to 1). Each failure is then assigned 

Cdf= 1 - exp( -Hj), Sf= exp( -#,).   (13-5) 

Special probability paper can be printed that 
is labeled with H instead of Cdf (or Sf). It is 
difficult to assign an uncertainty to the 
plotting position, but H ± >/77 sometimes is 
used because of the relationship of H to the 
Poisson and exponential distributions. 

An  example  of this plotting method is 
given in Part Three. 

13-5/13-6 
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CHAPTER 14 

GOODNESS-OF-FIT TESTS 

14-0 LIST OF SYMBOLS 

Cdf = Cumulative distributk 
tion 

csqf = Cdf of the chi-square 
tion 

k = number of cells 

K-S = Kolmogorov-Smirnoff 

"i = actual number in cell i 

N = sample size 

s- 

v 

X\,P 

= statistic  calculated   from the 
data 

= denotes   statistical   definition 

= mean number in cell / 

= degrees of freedom 

= value of chi-square such that 
csqf(x2

Vi P;v)=P 

14-1  INTRODUCTION 

Statisticians are divided on the utility of 
goodness-of-fit tests, although there is no 
question about their statistical validity. The 
question is on their utility. In almost any 
sampling situation, two extremes are possible: 

(1) Take so few data that no hypothesis 
will be rejected. 

(2) Take so many data that any hypothesis 
will be rejected. 

Generally it is considered unwise to use 
goodness-of-fit tests as anything more than a 
very crude means to decide which PrD family 
to use. Samples are so varied, even from the 
same PrD, that one can look very foolish by 
trying to get more information from a sample 
than is there. 

The two goodness-of-fit tests discussed in 
this chapter calculate a statistic from the data 
and compare it with the PrD of that statistic. 
Usual procedure is to see if the sample 
statistic is too large; if it is too large, the fit is 
regarded as inadequate. It is very worthwhile 
checking to see if the fit is "too good". If the 
fit is fortuitously very good (sample statistic 
is very small), there is a reasonable possibility 
that the sampling procedure was not as 
random as was planned. For example, some- 
one may have massaged the data to make 
them look better. 

14-2 CHI-SQUARE 

The data are put into cells. The actual 
number in each cell is compared with the 
s-expected number for that cell. The numbers 
are combined into a statistic which has, 
asymptotically, a chi-square distribution. 

14-2.1 DISCRETE  RANDOM  VARIABLES 

The data fall naturally into cells—the dis- 
crete values of the random variable. For a 
large  sample, the number in cell / , «,, can 

!4-l 
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reasonably be represented as a Poisson situa- 
tion with mean ju,- for cell i. The standard 
deviation of n, is >//IJ! If u; is large, nt has a 
s-normal distribution with mean n( and stan- 
dard deviation yfjlf. The nt is converted to a 
standard s-normal variate by the transforma- 
tion 

z, = (n,-M,)/>/Äir (14-1) 

The sum of squares of v s-independent stan- 
dard, s-normal variables has a chi-square dis- 
tribution with v degrees of freedom. Suppose 
there are k cells (values of the discrete 
random variable), e.g., for the usual pair of 
dice, there are 11 cells: the numbers 2, 3, 4, 
.. ., 11, 12. If sample size is fixed and known, 
only (k - 1) of the zi are s-independent, 
because if the first k - 1 are known, the fcth 
can be calculated from the data. Therefore v = 
k - 1, and the statistic 

X2 = £ A = £ (".- - V-if I Hi       (14-2) 

has a chi-square distribution with v - {k - 1) 
degrees of freedom. If any of the PrD 
parameters are estimated from the data, v 

usually is reduced by the number of param- 
eters so estimated. 

Conventional wisdom suggests that M,- > 5 
for all cells, otherwise cells ought to be 
combined. Simulation has shown that this is 
too strict. If fewer than 1/5 of the u( are less 
than 5 and none are less than 1, reasonable 
results will be obtained. 

The previous heuristic description of the 
source of the statistic is not rigorous, but it 
helps in remembering how to calculate the 
statistic and what its limitations are. 

X2 in Eq. 14-2 is compared with x2
vj> 

where csqf(x2
v<p; v) = P, and P is some 

reasonably large percentage, e.g., 95%. If X2 

> x2 v, p > the fit is regarded as too poor. X2 

also is compared with a x2v, p where P is a 
reasonably small percentage, e.g., 5%. If X2 < 
X2 v> p,the fit is regarded as suspiciously good 
and the source of the data is investigated. 

Example No. 1. A single coin was flipped 
10 times; the results were 2 heads, 8 tails. Was 
the combination of coin and flipping-method 
a fair one; i.e., is this result reasonable when 
the expectation is 50%-50%? 

14-2 
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Procedure 

1. Calculate-nurnber in each cell. State 
degrees of freedom. 

2. Calculate X2 from Eq. 14-2. 

Example 

3. In Table 6-1, find x2i 95» and X2 1 

1. 

2. 

3. 

nH = 2 
nT = 8 
v    = 2- -1 = 1 

n M      (n "M)2//i 

H     2 5 1.8 
T   _8 _5 1.8 

il     10 10 3.6 

A   1;95% = 3.85 
V2 

A   1,5% = .0039 

4.  State a conclusion. 4. The data are not "too good"; so there is no 
difficulty there. The data are poor, but they 
are that poor over 5% of the time. So one 
might be suspicious of the fairness of the 
procedure, but that is all. 

(The data actually were acquired with a nominally fair coin and method of flipping.) 

Example No. 2. A pair of dice were rolled 72 
times; the results are given in column 1 of 
Table  14-1.  Is the combination of dice and 

rolling method fair; i.e., is this a reasonable 
result if the expected values are as shown in 
column 2 of the table? 

TABLE 14-1 

DATA FOR EXAMPLE NO. 2 

#1 #2 #3 #1 #2 #3 

all "i "/ <",-M,)2/M,. all n. 
1 "/ <",-M,.»,. 

2 2 2 0.00 8 10 10 0.00 
3 5 4 0.25 9 5 8 1.13 
4 8 6 0.67 10 7 6 0.17 
5 8 8 0.00 11 5 4 0.25 
6 12 10 0.40 12 1 2 0.50 

7 9 12 0.75 Total 72 72 4.12 

u= 11 -1 = 10 

14-3 
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Procedure Example 

1. Put the data and s-expected values in a 1. See Table 14-1, columns 1 and 2. The usual 
table. assumptions about dice were made, v = 11 - 

1 = 10 

2. Calculate the individual terms in Eq. 14-2;     2. See column 3. 
then find X2. X2 =4.12 

3. In Table 6-1, find X2i095% andx2
10 s%        3. X2

10,9S% - 18.3 
Y2 = 3 94 
X   io,S%       Jy 

4. State a conclusion. 4. Since the X2 is so low, the data are almost 
suspiciously good. Certainly, X2 is not too 
large 

(The data actually were acquired with a nominally fair pair of dice and rolling method.) 

14-2.2 CONTINUOUS 
ABLE 

RANDOM    VARI- 

The basic theory is similar to that for a 
discrete random variable in par. 14-2.1, except 
that artificial cells must be set up. In the 
absence of an otherwise obvious method, the 
equal probability method has much to recom- 
mend it. The cell intervals are adjusted so that 
a random observation is equally likely to fall 
in any cell. With this method, the M,- can be 
less than 5.0, perhaps even as low as 1.0 or 
2.0. An adequate policy is to choose the 
number of cells (which must be an integer) so 
that M,- is just less than 5; e.g., if there are 43 
data, calculate 43/5 = 8.6 and round upwards 
to 9 cells. In this example, it wouldn't hurt to 

choose k = 10 (M,- = 4.3) because 10 is such an 
easy number to work with. 

If the equal probability method is used, Eq. 
14-2 becomes 

k 

kfHxf)-N (14-3) X2 = 
N i = 1 

Eq. 14-2 can also be used if it is more 
convenient. 

Example No. 3. A table in the literature is 
asserted to be random standard s-normal 
deviates. Pick the first 50 numbers and check 
that assertion with a chi-square test for 
goodness-of-fit. 

14-4 
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Procedure 

1. Choose the intervals. 

Example 

With N= 50 numbers, it is convenient to pick 
10 cells, v = 10 - 1 = 9. The cell boundaries 
correspond to gauf(z) = 0.00, 0.10, 0.20, 0.30, 
. . ., 0.90, 1.00. The cell boundaries are shown 
in column 1 of Step 2. 

2a. Prepare a table which shows how many 
fall in each interval. 

b. Calculate xf for each cell, and complete 
the table. 

3. Calculate X2 from Eq. 14-3. 

4. Find csqf(X2; v) from Table 6-1, and 
state the conclusion. 

2. interval xi *? 
—oo 

-1.28 
-0.842 

5 
5 
8 
6 
5 
0 
4 
5 
6 
6 

25 
25 
64 
36 
25 

0 
16 
25 
36 
36 

-0.524 
-0.253 

0 
+0.253 
+0.524 
+0.842 
+ 1.28 
+00 

Total 50 288 

k= \0,N = 50, „ = 9 

3. X2 =12   X 288-50=7.60 

4. csqf(l.60; 9) * 43% 

5. This is a very average value of X1. On the basis of 
this test, it would be difficult to fault the table. 

A detailed discussion of the chi-square test 
is also given in Part Four, par. 2-4.1 of this 
Handbook series. For sample sizes larger than, 
say, 20 or 30, this is a reasonably good test, 
although the K-S test is also quite good (for 
any sample size). 

14-3 KOLMOGOROV-SMIRNOFF 

statistic. Table 14-2 is a tabulation of the 
critical values. 1-sided tests can be made, but 
for most engineering purposes the 2-sided test 
(given here) is better. It is an excellent test 
and is rarely, if ever, inappropriate. If param- 
eters of the hypothesized distribution are 
estimated from the data, the intervals ought 
to be narrower. See Ref. 1; it is a good general 
reference on the topic. 

This test for goodness-of-fit compares the 
sample Cdf with the hypothesized Cdf. It 
finds the maximum difference (+ or —) 
between the two and compares it to a sample 

Example No. 4. Table 14-3 gives 10 values of 
a random variable, presumed to be from the 
uniform distribution on [0, 1 ]. Are they 
reasonable values? 

14-5 
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TABLE 14-2 

CRITICAL VALUES OF THE KOLMOGOROV-SMIRNOFF TEST STATISTIC 
N = sample size, C = s-confidence level, S = «significance level 

90%       95%       98%       99% 
10%        5%        2%        1% 

N C = 80% 
S  = 20% 

"T" .900 

2 .684 

3 .565 

4 .493 

5 .447 

6 .410 

7 .381 

8 .358 

9 .339 

10 .323 

11 .308 

12 .296 

13 .285 

14 .275 

15 .266 

16 .258 

17 .250 

18 .244 

19 .237 

20 .232 

22 .221 

24 .212 

26 .204 

28 .197 

30 .190 

32 .184 

34 .179 

36 .174 

38 .170 

40 .165 

approximation 1.07 
for JV > 10 /Ü+1 

.950 .975 .990 .995 

.776 .842 .900 .929 

.636 .708 .785 .829 

.565 .624 .689 .734 

.509 .563 .627 .669 

.468 .519 .577 .617 

.436 .483 .538 .576 

.410 .454 .507 .542 

.387 .430 .480 .513 

.369 .409 .457 .489 

.352 .391 .437 .468 

.338 .375 .419 .449 

.325 .361 .404 .432 

.314 .349 .390 .418 

.304 .338 .377 .404 

.295 .327 .366 .392 

.286 .318 .355 .381 

.279 .309 .346 .371 

.271 .301 .337 .361 

.265 .294 .329 .352 

.253 .281 .314 .337 

.242 .269 .301 .323 

.233 .259 .290 .311 

.225 .250 .279 .300 

.218 .242 .270 .290 

.211 .234 .262 .281 

.205 .227 .254 .273 

.199 .221 .247 .265 

.194 .215 .241 .258 

.189 .210 .235 .252 

1.22 1.36 1.52 1.63 

v/iv+T /w+T /jv+i /N+\ 

Notes: 
(1) The approximate formula has an error less than about ± 2% of the actual value. 
(2) This K-S statistic is compared to the Cmax = max  l^'actual-^^hypothesis' ,or a" sample points. If the K-S statistic is no 

more than Umax, the hypothesis is accepted at the appropriate s-confidence level. The Table gives the 2-sided statistic. 
(3) This K-S statistic can also be used to put a s-confidence band around a hypothesized Cdf. 
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Procedure 

1. Prepare the data in a table. 

2. Calculate the sample Cdf, and the differ- 
ence of the Cols. 2 and 3. 

3. Find the max j Idifference I} . 

4. From Table 14-2, find the K-S statistic 
for several s-confidence levels. 

5.  Draw a conclusion. 

Example 

1. See Table 14-3. Cols. 1 and 2. 

2. See Table 14-3, Cols. 3 and 4. 

3. max. diff. = 0.1708 

4. 5-Confidence level for N= 10 

80% 0.323 
90% 0.369 
95% 0.409 

5. The maximum deviation is well within bounds. 

TABLE 14-3 

DATA FOR EXAMPLE NO. 4 

order random sample 

number number Cdf difference 

1 0.1080 0.1000 0.0080 

2 0.3153 0.2000 0.1153 

3 0.4708 0.3000 0.1708 

4 0.4885 0.4000 0.0885 

5 0.6018 0.5000 0.1018 
6 0.6795 0.6000 0.0795 
7 0.7548 0.7000 0.0548 

8 0.8791 0.8000 0.0791 
9 0.9032 0.9000 0.0032 

10 0.9961 1.0000 0.0039 

Note:   For the uniform distribution, Cdf { x }   = x; so 
column 2 is both x and Cdf { x\ . 

14-7 
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Example No. 5. Pick 8 random samples of 10 points each from the uniform distribution and plot 
their actual Cdf vs uniform Cdf. Draw the 90% K-S lines on the graph. See Fig. 14-1. Of the 8 
samples, none crossed the 90% K-S lines, although on the average, 1 out of 10 samples will go 
outside the limits. The best linear fit to any of the lines is probably not one going through the origin 
with 45 deg slope (the population line). Certainly, all of the lines are quite crooked. Choosing a 
curved line to go through a set of points would be most inappropriate. 

See also the example in Part Four, par. 2-2.6. 

0.2       0.4       0.6       0.8        110 
Sample Cdf 

0.2       0.4       0.6       0.8 
Sample Cdf 

Figure 14-1.  Random Samples of 10 from the Uniform Distribution on [0, 1] 

REFERENCE 

1. L. H. Miller, "Table of Percentage Points 
of   Kolmogorov   Statistics",   Journal   of 

Amer.   Statistical  Assoc,   Vol.   51,   pp. 
111-121 (1956). 
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CHAPTER 15 

TESTS FOR MONOTONIC FAILURE RATES 

If it is known that a PrD has an increasing 
failure rate (IFR) or has a decreasing failure 
rate (DFR), then various other characteristics 
of these distributions can be proved. This is a 
field of current research. 

Tests for IFR and DFR, and further refer- 
ences are given in Ref. 1 (Sec. 3.4.6). The 
arithmetic in applying these tests is tedious 
but straightforward. There are difficulties in 
interpretation: 

(1) The conclusion applies only to the 
time interval within which data are taken. 
There is no guarantee that the conclusion 
applies to the PrD for very long times, but it 
is at very long times that the conclusion is of 
most interest. 

(2) The alternate hypotheses involve only 
monotonic failure rates. Failure rates that 
increase then decrease (e.g., a lognormal 
distribution), or vice versa, are not con- 
sidered. 

(3) It is not clear why a reliability engineer 
would really want to know this information. 
Even if he were sure, for example, that a PrD 
had an IFR, he wouldn't know how fast it 
was increasing. Most of the theorems in the 
literature are more interesting to the reliabil- 
ity theorist than to reliability engineers. 

Before using a test for monotonic failure 
rates, a statistician ought to be consulted to 
be sure that the test is not blindly applied and 
interpreted. 

REFERENCE 

1. W. Yurkowsky, Nonelectronic Reliability 
Notebook, March 1970, RADC-TR-69- 
458, AD-868 372. 
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CHAPTER 16 

BAYESIAN STATISTICS 

16-1   INTRODUCTION 

This chapter discusses the various Bayesian 
techniques and their caveats and controver- 
sies; it does not give detailed information on 
their use. A statistician ought to be consulted. 
There is never any quarrel with the Bayes 
formula (also called Bayes theorem). It is 
strongly associated with the very definition of 
conditional probability. 

There are 4 main categories of Bayesian 
activity (the categories are not necessarily 
mutually exclusive): 

(1) Prior distribution is real and known 
(no controversy). 

(2) Empirical Bayes. Prior distribution is 
real, but unknown. 

(3) Subjective Probability. Probability is 
used as a measure of degree-of-belief (d-of-b); 
the prior distribution is one of d-of-b before a 
particular test is run. This is quite controver- 
sial. 

(4) Bayesian Decision Theory. This is very 
difficult to use in practice; so it rarely is used 
in anything but simple examples in textbooks 
and articles. If it were used often, it would be 
very controversial. 

16-2 BAYES FORMULA 

Suppose  the set of possible values for a 
parameter is discrete and finite: 
Aj,   i   =    1,   ...,a.   Suppose   the   possible 
outcomes of an experiment are the set 
Bj, j = 1,   . . ., b. Then Bayes formula is 

Pr{At \Bj)=cPr{Bj\Ai}Pr{A1) (16-1) 

where c is a normalizing constant such that 

£,JVM, 12*,} =1 

£.i implies the sum over all i. 

If the set of possible values for the param- 
eter is the continuous random variable x, 
then Bayes formula is 

pdf{x \B,) =cPr{B, \x)pdf{x) (16-2) 

where c is a normalizing constant such that 

lx pdf \x\Bj} dx = 1, J x implies the integral 
over all x. 

If the possible outcomes of the experiment 
are the continuous random variable y, theft 
Bayes formula is 

pdf{x \y) = cpdf{y \x)pdf{x) (16-3) 

where c is a normalizing constant such that 

/. 
pdf{x \y}dx = \. 

There is nothing controversial about any of 
these formulas, they are straightforward, 
well-known applications of probability 
theory. It is in their use that controversy 
arises. 

16-3 INTERPRETATION OF PROBABILITY 

Probability is a mathematical concept and 

16-1 
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as such can be applied to anything that fits 
the constraints of the theory. The two main 
interpretations are 

(1) Relative frequency 

(2) Degree-of-belief. 

Relative frequency is a straightforward con- 
cept and is the classical statistical approach. 
Degree-of-belief often is associated with 
Bayesian theory and is a controversial ap- 
proach. The controversy stems about its 
subjective nature. A prudent person (by defi- 
nition) will adjust his d-of-b to correspond to 
relative frequency where the relative fre- 
quency is known. For example, a person who 
is concerned about the outcomes of honest 
throws of honest dice would be wise to have 
his d-of-b the same as the well-known relative 
frequency for dice. 

The proponents of d-of-b argue further that 
there are many situations where relative fre- 
quency is not appropriate since it will never 
be known. For example, it is d-of-b that one 
has concerning whether a pair of dice is 
honest or not. It is d-of-b that can be refined 
by actually throwing the dice and observing 
the outcomes. 

Degree-of-belief before any tests are run 
("prior" d-of-b) is subjective and not repro- 
ducible from person to person or even time to 
time for the same person. To opponents this 
is a disadvantage; to proponents it is an 
advantage because it recognizes a fact of life. 

In many complicated situations it is very 
difficult to know one's d-of-b. One may even 
believe mutually contradictory things, espe- 
cially when the contradiction is not apparent. 

Many engineers view the results of their 
own labors very optimistically. In order for 
them to use d-of-b fruitfully, they must 
impose a discipline upon themselves. Other- 
wise, they will commit the sins that op- 
ponents of d-of-b like to talk about. Degree- 
of-belief is useful, but unless one actively 

practices the necessary discipline, d-of-b must 
be avoided. 

The discipline has the following steps: 

(1) Write down the prior d-of-b. 

(2) Run many hypothetical experiments. 
Calculate the new d-of-b after each hypo- 
thetical experiment. 

(3) Analyze whether or not each new 
d-of-b seems reasonable in view of the hypo- 
thetical data. 

(4) (a) If it does, repeat Steps 2 and 3 
until virtually all possible outcomes have been 
hypothesized. 

(b) If it does not, revise the prior d-of-b 
and go back to Step 2. 

Example. Suppose an equipment is being 
designed and an engineer describes his prior 
d-of-b about its failure rate in a 1000-hr test. 
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Procedure 

1. Step 1, state the prior d-of-b. 

Step 2, try several hypothetical experi- 
ments. Use Eq. 16-1 for calculations. 

Example 

1. See Table 16-1 rows 1 and 2. For row 1 we 
presume that the engineer has decided it is 
reasonable to distinguish between these three 
failure rates. In practice, one would probably 
use more; e.g., KT1, 10"2, 1(T\ 1(T\ 10-s. 
For row 2 we presume that the engineer is rather 
optimistic about his handiwork, i.e., he is just 
positive it is almost perfect—a very common 
state of affairs, unfortunately. 

2. Suppose 5 samples are put on test. Hypothesize 
0 failures 
1 failure 
2 failures. 

See rows 3,4, and 5 of Table 16-1 for the cal- 
culations. We have presumed that the tests are 
of the pass-fail type. Thus the terms in the 
binomial distribution give the probability of 
the observed results for row 3. 

3. Analyze the results (Step 3). For the 0 failure case, the new d-of-b's are 
reasonable. For the 1 failure case, it is not 
likely that anyone would still have a 13% d-of-b 
that the failure-rate was 10"5. For the 2 failure 
case, the results are reasonable; all the d-of-b has 
shifted to the worst failure rate. 

4. Step 4b; try again. See Table 16-2, rows 1 and 2. This time, for 
row 2 the engineer is less blindly enthusiastic 
about his work, because he has seen the bad 
logical consequences of his former (Table 16-1) 
allocation of d-of-b about the failure rates. 

5. Repeat Step 2 of this procedure. 5.  5 samples are put on test. Hypothesize 
0 failure 
1 failure 
2 failures 

See rows 3, 4, and 5 of Table 16-2 for the 
calculations. 

6. Analyze the results. For 0 failures, the new d-of-b's are reasonable. 
For 1 failure, the new d-of-b in a 10-5 failure 
rate is lower than before, but still seems too 
high. 
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7. Try again. 7. See Table 16-3, rows 1 and 2. This time, for 
row 2 the engineer is downright humble about 
his work, again because he has seen the bad 
logical consequences of his former (Tables 16-1 
and 16-2) allocations of d-of-b about the failure 
rates. 

8. Repeat Step 2 of this procedure. 

9. Analyze the results. 

The example will not be pursued further, 
but in practice, the simulation ought to be 
much more extensive. If one is not prepared 
to perform extensive simulation on his prior 
degree-of-belief, he ought to avoid subjective 
Bayesian analysis altogether. 

16-4 PRIOR DISTRIBUTION IS REAL AND 
KNOWN 

This case presents no difficulties, it often is 
used as an example in textbooks to demon- 
strate apparent paradoxes about probabilities. 
It is probably rare that the prior distribution 
is known, although some work has been done 
on the PrD of actual reliability vs predicted 
reliability for some military systems. In these 
applications the validity of the prior distribu- 
tion can be questioned as far as its future 
utility is concerned; but this is no different 
than in many applications of probability. A 
statistician ought to be consulted. The blind 
application of formulas can be very mislead- 
ing. 

8. See Table 16-3, rows 3 and 4. 

9. For 0 failures, the new d-of-b's are reasonable. 
For 1 failure, the new d-of-b's are more reason- 
able than they were. Perhaps one could live 
with them. These methods are the way a rational 
(in the Bayesian sense) person converts prior 
d-of-b and the test results into a new d-of-b. One 
cannot go back and change the prior d-of-b 
after seeing the real actual data. That is why 
extensive simulation is so necessary. The exact 
same prior d-of-b that is used to convert the 
good test results also must be used to convert 
the bad ones. Anyone who suggests differently 
is, at best, ill informed. Unfortunately, the 
Bayesian reliability literature abounds with 
those bad suggestions about changing the prior 
d-of-b after seeing the actual data. 

16-5 EMPIRICAL BAYES 

The prior distribution is presumed to be 
real, but unknown. As samples are taken, they 
are presumed to illustrate that real prior 
distribution. Since the real Cdf of the prior 
distribution is only coarsely defined by the 
data (i.e., by the sample Cdf) a smoothing 
function is employed to estimate the real 
prior Cdf. Once this real prior Cdf has been 
estimated, it is used with the sample data in 
the same way as a real, known Cdf would be. 

A statistician ought to be consulted. The 
choice of a smoothing function is an art, not a 
science. One may wish to test the hypothesis 
that the samples do come from PrD's with 
different parameters. A great deal of engineer- 
ing and statistical judgment is necessary, and 
it ought to be made as explicit as possible. 

16-6 BAYESIAN DECISION THEORY 

The basic tenet is that eventually one wants 
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TABLE 16-1 

DATA AND RESULTS FOR EXAMPLE - TRIAL NO. 1 

AMCP 706-200 

2. 
3. 

a. failure-rate, per 1000 hr 10"' 10-* 10"5 

b. R, % 9.52 0.100 0.00100 
prior d-of-b, % 0.1 0.1 99.8 

a. prob, of outcome: 
0 failures in 5 tries, Rs 0.607 0.995 1.000 

b. product of rows 2 and 3a 6.07 X 10^ 9.95 X 10-4 0.998 
c. new d-of-b, % 0.06 0.10 99.84 
a. prob, of outcome: 

1 failure in 5 tries, 5/?4 R 0.319 4.98 X 10"3 5.00X10""S 

b. product of rows 2 and 4a 3.19X 10"* 4.98 X 10"* 4.99 X 10"5 

c. new d-of-b, % 85.32 1.33 13.35 
a. prob, of outcome: 

2 failures in 5 tries; 10/?3fl~J 6.71 X10"2 9.96 X 10"* 1.00X 10"9 

b. product of rows 2 and 5a 6.71 X 10-5 9.96 X 10"» 9.98 X 10-'° 
c. new d-of-b, % 99.984 0.0148 0.0015 

Notation: 
d-of-b     = degree-of-belief 

R    = «-reliability, R = exp(- Xt), X is failure rate, f is 1000 hr for the test 
R     =1 -R 

Notes: 
1. All calculations are made and kept to 10 significant figures, even though they are all rounded off for recording 

in the table 
2. The sum of the d-of-b's is not always exactly 100%, due to rounding errors from Note 1. 

TABLE 16-2 

DATA AND RESULTS FOR EXAMPLE - TRIAL NO. 2 

2. 
3. 

4. 

5. 

a. failure rate, per 1000 hr 
b. R, % 

prior d-of-b, % 
a. prob, of outcome: 

0 failures in 5 tries, Rs 

b. product of rows 2 and 3a 
c. new d-of-b, % 
a. prob, of outcome: 

1 failure in 5 tries, 5R*R 
b. product of rows 2 and 4a 
c. new d-of-b, % 
a. prob, of outcome: 

2 failures in 5 tries, 1QR3R2 

b. product of rows 2 and 5a 
c. new d-of-b, % 

10-' 10"3 io-5 

9.52 0.100 0.00100 
0.4 0.6 99.0 

0.607 0.995 1,000 
2.43 X 10-3 5.97 X 10-3 0.990 
0.24 0.60 99.16 

0.319 4.98 X 10-3 5.00 X 10~5 

1.28 X 10-3 2.99 X 10"5 4.95 X 10~s 

94.14 2.20 3.65 

6.71 X 10-2 9.96 X 10_* 1.00 X 10~9 

2.68X 10-4 5.98 X 10"8 9.90 X 10"10 

99.977 0.022 0.0004 

Notation & Notes:  Same as in Table 16-1 
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TABLE 16-3 

DATA AND RESULTS FOR EXAMPLE - TRIAL NO. 3 

1. a. failure rate, per 1000 hr 
b. R, % 

2. prior d-of-b, % 
3. a. prob, of outcome: 

0 failures in 5 tries, /?' 
b. product of rows 2 and 3a 
c. new d-of-b, % 

4. a. prob, of outcome: 
1 failure in 5 tries, 5fl4/? 

b. product of rows 2 and 4a 
c. new d-of-b, % 

5. a. prob, of outcome: 
2 failures in 5 tries, 10/?3ff2 

b. product of rows 2 and 5a 
c. new d-of-b, % 

10-' 
9.52 
1 

io-3 

0.100 
1 

10-' 
0.00100 
98 

0.607 
6.07 X 10"3 

0.61 

0.995 
9.95 X 10"3 

1.00 

1.000 
0.980 

98.39 

0.319 
3.19 X 10"3 

97.00 

4.98 X 10"3 

4.98 X 10"' 
1.51 

5.00 X 10-' 
4.90 X 10"' 
1.49 

6.71 X 10-1 

6.71 X 10"4 

99.985 

9.96 X 10"6 

9.96 X 10"8 

0.0148 

1.00 X 10-' 
9.80 X 10"10 

0.00015 

Notation & Notes:  Same as in Table 16-1 
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to make a decision that is based on the 
experimental results. Those results are not of 
interest in themselves; so why analyze them in 
detail. The procedure is to list the possible 
states of nature (e.g., the 3 failure rates in 
Table 16-1). Then the loss or gain involved in 
choosing each state when some state is true is 
estimated. Then a criterion for good decisions 
is hypothesized (e.g., minimize the worst 
possible loss, or maximize the .y-expected 
value) and the decision is chosen (given the 
experimental data) according to the criterion 
for a good decision. 

The argument against this whole process is 
that there are too many arbitrary assumptions 
that get lost in the shuffle. The final result 
appears quite emphatic, but the arbitrariness 
is hidden from view (perhaps unintentionally) 
and there is no measure of the uncertainties 
involved. It is argued that except for the most 
simple-minded situations of the kind used in 
textbook examples, applying Bayesian deci- 
sion theory is impossible. 

The arguments for Bayesian decision 
theory are that it gets all the assumptions out 
where they can be viewed. The value of more 
information can be calculated, and a variation 
analysis can be performed to find the critical 
variables in the decision. Far from hiding 
things, it makes everything explicit. The 
complications merely reflect reality. 

One certainly ought not to attempt to use 
Bayesian decision theory without the services 
of a very competent statistician (who under- 
stands it) and a very competent engineer (who 
understands it). The odds against its being 
really productive, rather than pointless or 
misleading are quite high. So unless there are 
lots of resources, leave it alone. 

16-7 SUBJECTIVE PROBABILITY 

variable about  which  degree-of-belief state- 
ments are to be made. 

(2) Use the conjugate prior distribution 
(continuous). It transforms the simpler situa- 
tions, into very straightforward calculations. 
For example, for the constant failure rate 
case, choosing a prior distribution is equiva- 
lent to choosing a prior test time and prior 
number of failures. The pair of sample data 
(failures, test time) are appropriately added to 
the prior pair to give the new pair, which will 
represent the new degree-of-belief. The bino- 
mial situation, is similar, except that total- 
number-tested replaces test-time. 

The conjugate failure distribution method 
ought to be used with caution. The family of 
prior distributions is quite rich, but it is 
difficult for an engineer to quantify his 
information in the necessary way. As men- 
tioned in par. 16-3, extensive simulation of 
experimental outcomes is necessary. It is 
quite easy, if no simulation is performed, to 
make seemingly realistic assumptions about 
one's prior beliefs, which turn out to be 
grossly misleading. 

The discrete prior distribution is more 
straightforward, although tedious to calculate. 
It has many advantages in terms of the 
visibility of the results. In cases where there 
are double peaks in the new d-of-b distribu- 
tion, the engineer is alerted to the fact that 
choosing a single number for his "best" belief 
might be misleading. 

If either of these approaches is used, a 
statistician ought to be consulted. The arith- 
metic is easy enough to do (although some- 
times tedious) but the results may be difficult 
to interpret. Merely because the calculations 
can be made does not mean they ought to be 
made. 

The 2 main approaches are: 

(1) Use   a  discrete PrD  for  the  random 

16-8  RECOMMENDATIONS 

Engineers   have   a   great   deal   of   prior 
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knowledge. If they did not, no production conditions,  and  with  help from competent 
line would ever work. But engineers do not statisticians, one of the Bayesian techniques 
design, predict, or produce perfectly. A large might be fruitful. This is an area of research, 
part of their training is in the directions to try not an area for blind calculations, 
for improvement. Prediction techniques that 
somehow use an engineer's prior knowledge, Cookbook  formulas and procedures have 
without   being   overly   optimistic  (or  even been omitted from this chapter on purpose, 
blindly optimistic), are needed. Under some They are too easy to misuse. 
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CHAPTER 17 

SAMPLING PLANS 

M1L-ST1>781   and  M1L-STD-105  contain the MIL-STD's. 
sampling plans that are useful in reliability 
and quality control. They are not repeated 
here. Before any sampling plan is used, its op- There   is   rarely   a  need   to  invent   new 
erating characteristics ought to be investigated sampling   plans.   One   doesn't   really   know 
rather thoroughly. If the sample size is not exactly  what  operating  characteristic  he  is 
fixed, then the average sample-size and maxi- willing   to   settle   for,  and  a  great  deal  of 
mum sample-size characterestics ought to be arbitrariness   exists—enough   so   that  it  will 
investigated. Much of this is already done in usually encompass an already analyzed plan. 
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CHAPTER 18 

MISCELLANEOUS DESIGN AIDS 

Several   references   have   collected   many tions. Some of the aids become obsolete as 
reliability-mathematics design-aids. They are the  techniques and materiel to which they 
not reprinted here since each requires exten- refer are replaced by newer technologies and 
sive explanation of its procedures and limita- analyses. Refs. 1, 2, and 3 are good sources of 

these aids. 

REFERENCES 

1. Handbook   of   Reliability   Engineering, 530-01-1-762,   ARINC   Research   Corp., 
NAVWEPS  00-65-502,  Bureau of Naval Annapolis, MD, April 1967. 
Weapons, 1 June 1964. 

3. NAVSHIPS   94501.   BuShips   Reliability 
Design Handbook,  Fleet Electronics Ef- 

2. Reliability and Maintainability Handbook fectiveness Branch, BuShips, 28 February 
for    the    US    Weather   Bureau,    Publ. 1965. 
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B 

Bayesian statistics, 16-1 
Beta distribution, 10-1, 13-2 
Binomial distribution, 3-1, 13-2 

Incomplete gamma function, 11-1 

K 

Kolmogorov-Smirnov test, 13-1, 14-5 

Chi-square distribution, 6-2, 6-3, 14-1 
Chi-square/nu distribution, 6-3 
A'-confidence, 12-1 

continuous variable, 12-3 
discrete variable, 12-5, 12-7 
See also: Under each probability distribu- 
tion 

Lognormal distribution, 9-1 

N 

Names (probability distributions) 
See: Under each name of a probability 
distribution, 2-2 

^-normal distribution, 5-1 

Decision theory, 16-4 
Definitions 

See:  The desired word in Chapter 1, for 
probability distributions. See: The name 
of the probability distribution 

Discrete probability distributions, 3-1,4-1 

Plotting positions, 13-1 
Poisson distribution, 4-1, 7-2 
Probability distribution, 

See:  Under the name of the probability 
distribution 

Empirical Bayes, 16-4 
Exponential distribution, 7-1 Randomized 5-confidence intervals, 12-7 

F-distribution, 6-12 
Fisher-Snedecor F-distribution, 6-12 

^-statistic, 5-1 
Student's /-distribution, 6-7 

Gamma distribution, 11-1 
Gaussian distribution, 5-1 
Glossary, 1-1 
Goodness-of-fit tests, 14-1 

/-distribution, 6-7 
Tables, 

See: Under each probability distribution 

W 

Incomplete beta function, 10-1 Weibull distribution, 8-1 
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